
LATEX in the Classroom

Dan Raies
raies@uoregon.edu

Tuesday, January 28, 2014

Disclaimer

I am not an expert in LATEX. The advice given here is based on nothing more than experience.
It is likely that there are better ways to do some of these things but the techniques here are
what works for me.

All packages are cited so that you can look up the documentation yourself and find what
works best for you. The bibliography always references the package on the CTAN website
[1]. There you will find the package itself (if you need to download it) as well as package
documentation (usually) provided by the author. I have checked that all of the packages I’ve
referenced are well-documented at the time of writing this document.

The code for this document is available upon request.

1

Contents

1 Basic LATEX 3
1.1 Paragraph Behavior . 3
1.2 Horizontal Spacing . 3
1.3 Multi-Line Equations . 4
1.4 Units . 5
1.5 Custom Commands . 6
1.6 Modular Documents . 8

2 Quizzes and Exams 9
2.1 Margins, Headers, and Footers . 9
2.2 Question Numbering . 10
2.3 Spacing . 12
2.4 Answer Keys . 13

3 Handouts 14
3.1 Answer Keys (Again) . 14
3.2 Clickables . 15
3.3 Equation Numbering and Referencing . 15
3.4 Common Preamble . 17

4 Images and the Like 18
4.1 Importing Images . 18
4.2 Tikz . 19
4.3 Graphing Functions . 25
4.4 Advanced Tikz Examples . 28
4.5 Figures . 30

5 Final Thoughts 31

LATEX in the Classroom

1 Basic LATEX

This guide assumes that the user is compiling documents using the pdflatex command. This is the default in most editors and
has become a common practice. If you are still compiling documents with the latex command I urge you to try pdflatex.

At several points throughout this document we will refer to external files. Whenever a compiled document uses other files
(perhaps using the \include command or the \includegraphics command) it will be assumed that those files are in the same
directory as the file that refers to them. It is easy to define relative paths to documents that aren’t in the same directory, but we
won’t get into that here.

1.1 Paragraph Behavior

By default, LATEX will place an indent in front of each paragraph and no space between paragraphs. This can be inconvenient for
a syllabus or for an exam. The quick fix for this is to load the parskip package [11]. Putting the following line in the preamble
will remove the indent and put a small amount of space between paragraphs.

1 % Putting this line in the preamble changes the behavior of paragraphs.
2 \usepackage{parskip}

Use of the parskip package is nothing more than a quick fix. The proper way to do this is to change the \parindent and
\parskip variables (ideally by using or defining a new document class).

1.2 Horizontal Spacing

There are two situations where it is important to be mindful of spacing. The first occurs after a period. By default, LATEX assumes
that every period is at the end of a sentence and it provides a small amount of extra space. To fix this, simply put the \ character
after the period when the period is not at the end of a sentence. It is subtle, but there is a difference in the result of the following
two lines of code:

Code:

1 % This is wrong.
2 Mr. Michael Price is the world ’s best boss.
3

4 % This is right.
5 Mr.\ Michael Price is the world ’s best boss.

Result:

Mr. Michael Price is the world’s best boss.

Mr. Michael Price is the world’s best boss.

Another problem in spacing occurs after the use of a command. To typeset “LATEX” I use the \LaTeX command. The compiler
needs a space after a command to tell it that the command is over. Hence the compiler always assumes that the space after a
command is used to end the command and that it should never typeset a space directly after the command. To tell the compiler
that it should typeset a space after a command, put a \ after it. The difference is shown below:

Code:
1 % There will be no space after the command.
2 \LaTeX is the best.
3

Tuesday, January 28, 2014 Page 3 of 34

LATEX in the Classroom

4 % There will be a space after the command.
5 \LaTeX\ is the best.

Result:

LATEXis the best.

LATEX is the best.

There are also commands for custom horizontal spacing. This can be especially useful when typesetting equations Some only
work in math mode and some work in both text and math mode. They are as follows:

• \! inserts a negative thin space in math mode.

• \, inserts a (positive) thin space in text mode or math mode.

• \> and \: insert a medium space in math mode.

• \; inserts a thick space in math mode.

• \enspace inserts a space of .5em in text mode or math mode.

• \quad inserts a space of 1em in text mode or math mode.

• \qquad inserts a space of 2em in text mode or math mode.

• \hspace{<length>} inserts a space of <length> in text mode or math mode.

• \hfill fills the available horizontal space.

The following example demonstrates how small amounts of horizontal space can influence the appearance of an equation:

Code:

1 % No horizontal spacing.
2 \[g(a,b) = \int_0^a \int_0^b G(x,y)dydx\]
3

4 % Horizontal spacing adjustment.
5 \[g(a,b) = \int_0^a\!\!\ int_0^b G(x,y)\,dy\,dx\]

Result:

g(a,b) =
∫a
0

∫b
0
G(x,y)dydx

g(a,b) =
∫a
0

∫b
0
G(x,y)dydx

Note: if you think that I am typesetting my differentials wrong then you are not alone. This seems to be a regional preference
and there is a lot of debate about it in the LATEX community.

1.3 Multi-Line Equations

The align environment allows for convenient typesetting of equations that require more than one line. However, the align
environment will give each of those lines an equation number. Using the align* environment instead will remove those
numbers, but sometimes it is nice to give the entire grouping one common equation number.

Tuesday, January 28, 2014 Page 4 of 34

LATEX in the Classroom

This cannot be accomplished (to my knowledge) with the align environment. Instead, use the split environment within the
equation environment. An example is shown below:

Code:

1 % Using the align environment.
2 \begin{align}
3 f(x) &= (x-2)(x+1) \label{eq:1a} \\
4 &= x^2-x-2 \label{eq:1b}
5 \end{align}
6

7 % Using the split environment within equation.
8 \begin{equation }\label{eq:2}
9 \begin{split}

10 f(x) &= (x-2)(x+1) \\
11 &= x^2-x-2
12 \end{split}
13 \end{equation}

Result:

f(x) = (x− 2)(x+ 1) (1)

= x2 − x− 2 (2)

f(x) = (x− 2)(x+ 1)

= x2 − x− 2
(3)

Note that the syntax is exactly the same in the split environment as it is in the align environment (that is, & and \\ work the
same) except that each line gets its own label in the align environment while the split environment only needs one label for
the entire equation which is . . . kind of the point.

1.4 Units

Typesetting units can be a tricky business, especially for new LATEX users. However, the siunitx package [36] really helps. The
\si command will typeset units on their own while the \SI command will typeset a number along with the appropriate units.
The example below demonstrates some of the functionality of the package:

Code:

1 \begin{itemize}
2 \item \si{\ kilogram\meter\per\second}
3 \item \si[per -mode=symbol]{\ kilogram\meter\per\second}
4 \item \SI {200}{\ centi\meter}
5 \item \SI{2.4e-9}{\ gram}
6 \item \SI {49588394394}{\ mole}
7 \item \SI {30}[\$]{}
8 \item \SI {30}{\%}
9 \item \ang {30}

10 \item \num {3.02 e23}
11 \end{itemize}

Tuesday, January 28, 2014 Page 5 of 34

LATEX in the Classroom

Result:

• kg m s−1

• kg m/s

• 200 cm

• 2.4× 10−9 g

• 49 588 394 394mol

• $30

• 30%

• 30◦

• 3.02× 1023

See the siunitx documentation to alter the style of the output. Keep in mind that the siunitx package only knows S.I. units
by default. However, it is easy to add imperial units with the \DeclareSIUnit package as shown below.

Code:

1 % These lines need to be in the preamble.
2 \usepackage{siunitx}
3 \DeclareSIUnit\inch{in}
4 \DeclareSIUnit\foot{ft}
5

6 ...
7

8 % This goes in the body of the document.
9 A yard stick contains \SI {36}{\ inch}, or \SI{3}{\ foot}.

Result:

A yard stick contains 36 in, or 3 ft.

Note that the SIunits package [35] is depreciated and should not be used.

1.5 Custom Commands

It is incredibly useful to be able to define custom commands. There are (unfortunately) several ways to do this; most of the
time I find that the \newcommand command does the job. For example, the following line creates a command called \myCommand
which simply prints the text “Hello, world!"

1 % Put this in the preamble to create the command \myCommand.
2 \newcommand {\ myCommand }{Hello , world !}

Once this line is in the preamble, it can be implemented as follows:

Code:

1 My custom command prints \myCommand

Tuesday, January 28, 2014 Page 6 of 34

LATEX in the Classroom

Result:

My custom command prints Hello, world!

Custom commands become particularly useful when they are created to take arguments. The general form of the \newcommand
command looks like \newcommand{<name>}[<number of arguments>]{<output>}. If there are three arguments, then to use
them when defining the output you simply type #1, #2, and #3. An example is shown below:

Code:

1 % Put this in the preamble to create the command \myVec.
2 \newcommand {\myVec }[3]{#1 \, \vec{i} + #2 \, \vec{j} + #3 \, \vec{k}}
3

4 ...
5

6 % Put this in the body of the document to implement the command.
7 Vectors in \mathbb{R}^3 have the form $\myVec{x}{y}{z}$.

Result:

Vectors in R3 have the form x~i+ y~j+ z~k.

Note that the \myVec command was written assuming that it would be used in math mode. If it were invoked outside of math
mode then there would be an error (the \vec command does not work outside of math mode). It can be valuable to write a
command which forces the compiler to use math mode even if it is invoked outside of math mode. If you want to do this, look
up the \ensuremath command.

There may be a time when you want to overwrite a command that already exists. For example, maybe you don’t like the way
that LATEX renders the \vec command by default and you want to overwrite it with your own vector notation. If you tried
\newcommand{\vec}[1]{<output>} then the compiler would throw an error because you’re trying to define a command that
already exists. In this case, simply replace \newcommand with \renewcommand and the compiler will understand what you’re
doing. Of course, use \renewcommand with caution; there are many commands that should never be overwritten.

The other commands (that I’ve used before) to define things are \def, \let, \providecommand, and \DeclareRobustCommand.
The \def and \let commands are similar (though subtly different) and they are more primitive than \newcommand (the syt-
nax for these two commands is slightly different than that of \newcommand). The \providecommand command works just
like \newcommand except that the \providecommand{\aCommand}{<output>} defines the command \aCommand according to the
definition unless the command already exists, in which case the old definition is preserved. The \DeclareRobustCommand com-
mand is a more stable version of \newcommand. Some commands are fragile and may fail in certain environments. If you find
that a custom command is causing an error and you can’t see a reason why that should be, try replacing \newcommand with
\DeclareRobustCommand. It is generally considered bad practice to use \DeclareRobustCommand in all cases “just to be safe.”
In my entire lifetime I’ve only ever come up with one custom command that required \DeclareRobustCommand. It is shown
below: (Note that this is a poorly written command that I do not use any more.)

1 % This command throws and error sometimes when defined with \newcommand.
2 \DeclareRobustCommand {\ autorefeq }[1]{\ hyperref [#1]{ Equation ~\refeq {#1}}}

It is also possible to create custom environments in LATEX as well as custom commands. This is done with the (you guessed it)
\newenvironment command. Custom environments are a little trickier and, personally, I use them a lot less. As a reminder, the
difference between a command and an environment is shown below:

1 % Commands are called as follows:
2 \someCommand {...}
3

Tuesday, January 28, 2014 Page 7 of 34

LATEX in the Classroom

4 % Environments are called as follows:
5 \begin{someEnvironment}
6 ...
7 \end{someEnvironment}

Advanced users (whatever that means) should look up the xkeyval package [2]. This is a lovely package for creating commands
with more functionality (like key/value options) which has excellent documentation.

Custom commands need to come with a warning. They are useful, but they should be implemented with some reservations.
Overusing them can cause confusion and frustration. The internet (or at least the parts of the internet that I frequent) is full
of arguments about when it is appropriate to use a custom command. It is also my understanding that some journals will not
accept article submissions that use custom commands.

1.6 Modular Documents

Most LATEX projects are going to consist of a single .tex document and the files that result from compiling it. Sometimes,
however, it is convenient for the content of the project to be spread over multiple files. In this case there will still be one
“master” .tex file which will be compiled and several other .tex files which contain content that will be retrieved by the
master file. This can be done using the \input and \include commands.

The \input command looks for a single argument (the name of a file without extension) and it then looks for a .tex file by that
name. It then simply places the content from that .tex file into the file that called the \input command. For example, suppose
that you have a folder called “Project” which contains five files: master.tex, introduction.tex, chapter1.tex, chapter2.tex,
and chapter3.tex. The contents of master.tex might look something like the following:

1 % Below is everything in master.tex:
2 \documentclass{article}
3 \begin{document}
4 % The \input command is used to pull content from other files into this file. Make sure that each

of the corresponding .tex files (for example , introduction.tex) are in the same directory as
master.tex.

5 \input{introduction}
6 \input{chapter1}
7 \input{chapter2}
8 \input{chapter3}
9 \end{document}

Note that \input{introduction} does not contain the file extension. The \input command assumes that its arguments are
.tex files. When master.tex is compiled the result will be exactly the same as if the \input{...} command were replaced by
the contents of the file that it calls. Simply put, \input is analogous to “copy-and-paste.” Note that, in this case, no file other
than master.tex should contain \documentclass}, \begin{document}, or \end{document} commands.

The second way to accomplish a similar goal is with the \include command. There are important differences between \input
and \include. The difference in the output is that \include will put \clearpage commands (essentially) before and after the
content in the file. Also, \input commands can be nested (that is, you can use an \input command inside of a file that will also
be called by an \input command) whereas \include commands cannot be nested. However, \input commands can be nested
inside of \include commands.

The primary feature of \include is that each individual file is given its own .aux file which, coupled with the \includeonly
command, means that you can have a document which contains references to labels that are not in the content of the document,
but the document can still understand those references. This is useful if, for example, you want to write lecture notes but you
don’t want to present all of the notes to your students at once. You can have references in chapter 1 which refer to labels in
chapter 3, but when only chapter 1 is compiled those references will still work. (Of course, this confuses the hyperref package.)

Tuesday, January 28, 2014 Page 8 of 34

LATEX in the Classroom

2 Quizzes and Exams

One way to typeset exams is through the exam document class [26]. This document class provides custom formatting, imports
several packages, and contains custom commands that allow its users to create nice exams. I do not like to use this class. I
prefer to build exams from scratch (usually using the article class). This section contains some of the techniques that I use to
do that.

2.1 Margins, Headers, and Footers

By default, LATEX uses extremely wide margins which are not ideal for exams. The variables that are used for the spacing around
the edge can be modified by hand but this is not advisable. There are a lot of them, they interact with each other in complicated
ways, and it is difficult to manipulate them to get the margins that you want. A popular way to achieve smaller, uniform
margins is to use the fullpage package [25] as below:

1 % This is depreciated. Do not do this.
2 \usepackage{fullpage}

However, the fullpage package is depreciated and should not be used. Instead, use the geometry package [16] with the margin
option as follows:

1 % Put this in the preamble to get margins of the desired size.
2 \usepackage[margin =1in]{ geometry}

The geometry package has several other useful features for advanced users.

The headers and footers also interact with the margins. A convenient and popular package for these things is the fancyhdr
package [27] which is the package that was used to make the headers and footers in this document. Use the following com-
mands to load the fancyhdr package:

1 % Putting this code in the preamble of your document loades the fancyhdr package.
2 \usepackage{fancyhdr}
3 % These two commands control the line below the header and above the footer. A value of 0pt

removes them.
4 \renewcommand {\ headrulewidth }{0.5 pt}
5 \renewcommand {\ footrulewidth }{0.5 pt}

Once the package has been loaded you can actually control the header and footer. The code below was used to create the
headers and footers for this document:

1 % These can appear in the preamble or in body of the document.
2 % We first tell the document to use headers and footers.
3 \pagestyle{fancy}
4 % These three lines control the contents of the header.
5 \lhead{\ small \LaTeX\ in the Classroom}
6 \chead{}
7 \rhead{}
8 % These three lines control the contents of the footer.
9 \lfoot{\ small \emph{Tuesday , January 28, 2014}}

10 \cfoot{}
11 \rfoot{\ small Page \thepage\ of \pageref{LastPage }}

Tuesday, January 28, 2014 Page 9 of 34

LATEX in the Classroom

The \lhead command controls the text on the left side of the header, the \chead commad controls the text in the middle of
the header, and the \rhead command controls the text on the right side of the header. The footer commands are similar. The
command \pageref{LastPage} requires the use of the lastpage package [15].

It is often convenient to change or remove the header at different points in the document. For example, this document has no
header and footer on the first page. To change the contents of the header, simply change the \xhead and \xfoot commands
at any point; those changes will start on the page where those commands occur. You can also remove the headers and footers
with another call to \pagestyle. The line below removes all headers and footers from that point forward:

1 % Headers and footers will be removed unless another call to \pagestyle is made.
2 \pagestyle{empty}

The \pagestyle command can be used at any point in the document to change or remove the headers and footers.

If you are using a header and footer, you need to tell the geometry package so that it can adjust the margins accordingly. This
is done with the includeheadfoot option as follows:

1 % Make sure to use the includeheadfoot option if you use headers and footers.
2 \usepackage[includeheadfoot ,margin =1in]{ geometry}

The margins may still interfere with the header sometimes (though it is unusual). If the header is overlapping the first line(s)
on each page, try adjusting the headsep parameter. In the line below, adjust 10pt until you get the desired spacing:

1 % This line in the preamble changes the distance between the header and the text.
2 \setlength {\ headsep }{10pt}

2.2 Question Numbering

There are fancy ways to number questions, but the easiest is with the enumerate environment. A simple example is shown
below.

Code:

1 \begin{enumerate}
2 \item (2pt) Define a solvable group.
3 \item (3pt) Prove that all finite p -groups are solvable.
4 \end{enumerate}

Result:

1. (2pt) Define a solvable group.

2. (3pt) Prove that all finite p-groups are solvable.

Every use of an enumerate environment restarts the counter. However, this can be avoided with the enumitem package [18].
After loading the package, simply replace \begin{enumerate} with \begin{enumerate}[resume] to make the numbering pick
up where it last left off. An example is shown below:

Code:

1 % Make sure this line is put in the preamble.
2 \usepackage{enumitem}

Tuesday, January 28, 2014 Page 10 of 34

LATEX in the Classroom

3

4 ...
5

6 % This list will start from 1, like normal.
7 \begin{enumerate}
8 \item (2pt) Define a solvable group.
9 \item (3pt) Prove that all finite p -groups are solvable.

10 \end{enumerate}
11

12 Fill in the blank:
13

14 % This list will start where the last list left off.
15 \begin{enumerate }[resume]
16 \item (1pt) There are exactly \rule[-1pt]{2em}{0.5 pt} groups of order six.
17 \item (1pt) If there is only one group of order n then n is divisible by at most \rule[-1pt]{2

em}{0.5 pt} primes.
18 \end{enumerate}

Result:

1. (2pt) Define a solvable group.

2. (3pt) Prove that all finite p-groups are solvable.

Fill in the blank:

3. (1pt) There are exactly groups of order six.

4. (1pt) If there is only one group of order n then n is divisible by at most primes.

It is also useful to be able to change the labeling of the items. That is, instead of using numbers it might be preferable to use
letters or roman numerals. This is also done with the enumitem package.

Code:

1 % Make sure that the enumitem package is loaded in the preamble.
2

3 % Labels will look like (III).
4 \begin{enumerate }[label =(\ Roman*)]
5 \item (2pt) Define a solvable group.
6 \item (3pt) Prove that all finite p -groups are solvable.
7 \end{enumerate}
8

9 Fill in the blank:
10

11 % Labels will look like c:.
12 \begin{enumerate }[label=\alph *:]
13 \item (1pt) There are exactly \rule[-1pt]{2em}{0.5 pt} groups of order six.
14 \item (1pt) If there is only one group of order n then n is divisible by at most \rule[-1pt]{2

em}{0.5 pt} primes.
15 \end{enumerate}

Result:

(I) (2pt) Define a solvable group.

(II) (3pt) Prove that all finite p-groups are solvable.

Tuesday, January 28, 2014 Page 11 of 34

LATEX in the Classroom

Fill in the blank:

a: (1pt) There are exactly groups of order six.

b: (1pt) If there is only one group of order n then n is divisible by at most primes.

The most useful choices for counters are \arabic, \Arabic, \alph, \Alph, , \roman, and \Roman. The meanings should be
self-explanatory. The enumitem package has many useful features that provide additional functionality to the enumerate envi-
ronment.

This is not the only way to change the display of the counters. In fact, it is neither the simplest nor the best. The enumerate
package [4] provides an easier way of accomplishing the same but it does not interact well with the enumitem package. (The
enumerate package is something of a watered-down version of enumitem.) The most complete (and most advanced) way to
change the enumerate environment is to redefine its variables directly. This can be done locally or globally and allows full
control. However, I find that the enumitem packages works in most cases.

Note that enumerate environments can be nested so that problems can have different parts. An example is shown below:

Code:

1 \begin{enumerate}
2 \item Let $f(x)=x^2-1.$
3 \begin{enumerate}
4 \item (2pt) Find all x such that $f(x)=-1$.
5 \item (2pt) Find all x such that $f(x)=1$.
6 \end{enumerate}
7 \item (1pt) If $f(x)=x^3-6x^2+2x-1$ find $f(3)$.
8 \end{enumerate}

Result:

1. Let f(x) = x2 − 1.

(a) (2pt) Find all x such that f(x) = −1.

(b) (2pt) Find all x such that f(x) = 1.

2. (1pt) If f(x) = x3 − 6x2 + 2x− 1 find f(3).

2.3 Spacing

It is likely that you will want to add space between questions for students to work. This is done with vertical spacing commands.

\clearpage: This command (with no arguments) ends the current page and pushes all of the content after it onto the next page.
There is also a \newpage command; the difference is in how they handle floats. Most of the time \clearpage and \newpage
do the same thing. I usually use \clearpage unless I have a problem.

\vspace: This command adds a specified amount of vertical spacing up until a page break. That is, \vspace{2in} leaves 2
inches of vertical spacing between the command before and the command after unless there is not 2 inches of space left
on the page, in which case it acts like \clearpage. The \vspace* command does the same except it runs across page
breaks.

\vfill: This command (with no arguments) takes all of the vertical spacing that would normally appear at the end of the page
and puts it at the specified location. If two \vfill commands are used on the same page then the space is distributed
evenly between those two commands. Note that vertical spacing is allocated to \vspace commands before it is distributed
to \vfill commands.

An example is going to be illustrative. Consider the code below:

Tuesday, January 28, 2014 Page 12 of 34

LATEX in the Classroom

1 \clearpage
2

3 \begin{enumerate}
4 \item first question
5 \vspace {2in}
6 \item second question
7 \vfill
8 \item third question
9 \vfill

10 \end{enumerate}
11

12 \clearpage

The two \clearpage commands ensure that these three questions all land on the same page and nothing else will be on that
page. The \vspace{2in} command places 2 inches of vertical spacing after the first question. The two \vfill commands then
make sure that there is the same amount of space after the second question and the third question. Note that it is perfectly
acceptable to put the \clearpage command within the enumerate environment.

At this point, I do not know of a way to place a certain percentage of the remaining vertical spacing in a particular place. That
is, if there are two questions on a page you might want to give one of them 40% of the vertical space and the other one 60% of
the vertical space. I do not know a way to accomplish that effect. I would use a single \vspace command and a single \vfill
command and play with the argument of the \vspace until it looked approximately correct.

2.4 Answer Keys

After students take a quiz I always want to give them a key. At first I would copy Quiz.tex, rename it Quiz-key.tex, and then
change all of the vertical spacing commands to answers. This is not a good system. It is terribly inconvenient to have so much
identical content in two different files. Every time one of them is changed the other needs to be changed and it can be hard to
remember to do that. I have since developed solutions to this problem.

One option is to put the following custom command into your preamble:

1 % This is the command that allows switching between quiz and key.
2 % Use #1 for a quiz and #2 for a key.
3 \newcommand {\ switchme }[2]{#1}

Then, when typesetting your quiz, put all vertical spacing commands in the first argument of \switchme and all answers in the
second argument. All \clearpage commands should be written as \switchme{\clearpage}{}. The implementation is shown
below:

1 \switchme {\ clearpage }{}
2

3 \begin{enumerate}
4 \item What is $8 + 14$?
5 \switchme {\ vspace {2in}}{ Answer: $8 +14=22$}
6 \item If $f(x)=2x-7$, find $f(5)$.
7 \switchme {\ vfill }{ Answer: $f(5)=3$}
8 \item Simplify $\sqrt {50}$ as much as possible.
9 \switchme {\ vfill }{ Answer: $5\sqrt {2}$}

10 \end{enumerate}
11

12 \switchme {\ clearpage }{}

The utility of the \switchme command is that the way it is defined above it only prints the first argument (the vertical spacing)
while ignoring the second. However, by changing the #1 in the definition to #2 the command only prints the second argument

Tuesday, January 28, 2014 Page 13 of 34

LATEX in the Classroom

(the answer) and ignores the first argument. When the document is compiled with a value of #1 in the definition of \switchme
you get a quiz but by simply changing the value of #1 to #2 and recompiling you get a key.

3 Handouts

Typesetting handouts - like syllabi or homework assignments - is often different than typesetting quizzes or exams.

3.1 Answer Keys (Again)

Section 2.4 explored one way to make a single LATEX file that works as both a quiz and an answer key. In a handout, there may
be times when you do not care about adding vertical spacing. For example, suppose you’re writing a homework assignment
for your students. In this case, there is another way to make a single document which works as both an assignment and a key.

The idea here is similar. We will define a command called \answer which does different things depending on its definition.
First, the body of the homework assignment should look something like this:

1 \begin{enumerate}
2 \item What is $\sqrt {4}$?
3 \answer{2}
4 \item How many feet are in a mile?
5 \answer {5280}
6 \item What is the capital of Maine?
7 \answer{Augusta}
8 \end{enumerate}

Then place the following two commands in the preamble:

1 % Leave this line uncommented to get an assignment.
2 \newcommand {\ answer }[1]{}
3

4 % Leave this line uncommented to get a key.
5 \newcommand {\ answer }[1]{\ par\fbox{Answer: } #1}

Leaving the first uncommented tells the compiler to ignore everything inside of an \answer command. Leaving the second
uncommented tells the compiler to render the answer with some formatting (of your choosing).

A convenient usage for this trick is when there is one common set of questions that are used across many different documents.
For example, my lecture notes contain homework exercises at the end of each section. These exercises show up in four different
places: in the notes, in my “instructor version” of the notes, in handouts that I give to the students (containing only the
exercises), and in the answer keys that I post after homework is due. As mentioned before, it is terribly inconvenient to have
the same code in four different places as any small change needs to be implemented four times.

The solution that I have adapted is to keep the questions in their own separate file. For example, there is a file called
HWquestions3_4.tex whose contents are below:

1 % The complete contents of HWquestions3_4.tex (as you will notice , my class is very easy).
2 \item What is $\sqrt {4}$?
3 \answer{2}
4 \item How many feet are in a mile?
5 \answer {5280}
6 \item What is the capital of Maine?
7 \answer{Augusta}

Tuesday, January 28, 2014 Page 14 of 34

LATEX in the Classroom

Note that this content is not wrapped in an enumerate environment. This is so that I can have control over the enumerate
environment in each individual document. Then each of the four documents which contain this content have code similar to
the following:

1 \begin{enumerate}
2 % This line imports the questions.
3 \input{HWquestions3_4}
4 \end{enumerate}

Remember that \input is appropriate here because it is unlikely that I want the \clearpage commands that \include puts
before and after things. This implementation allows me to put different definitions of the \answer commands in each document
separately depending on whether I want the answers included and how I want them to be formatted.

3.2 Clickables

Of course, LATEX can handle references without any additional setup. Use of the \label{key} and \ref{key} (and some of
its cousins) are built in by default. However, with more and more documents being accessed on a screen (rather than being
printed), it is convenient if those references can be clickable.

This functionality is provided by the hyperref package [24]. Simply loading the hyperref package in the preamble will make
all links clickable, but there is a lot of other customization available. This is a very large and versatile package that I leave you
to explore, but below is the (important part of the) implementation of the hyperref package in preamble of this document:

1 % First the package is imported.
2 \usepackage{hyperref}
3

4 % The \hypersetup command customizes the package.
5 \hypersetup{colorlinks=true , linktocpage=true , pdfhighlight =/O, urlcolor=myBrown , linkcolor=myBlue

, citecolor=myGreen}

The code above won’t compile in another document unless the colors myBrown, myBlue, and myGreen are defined. There are, of
course, default colors but the xcolor package [19] allows users to define their own custom colors. This is another package with
a lot of options, but for now I leave you with the way the colors were defined in this document:

1 % First import the package.
2 \usepackage{xcolor}
3 % Then define the colors.
4 \definecolor{myGreen }{rgb}{0 ,.6 ,0}
5 \definecolor{myBrown }{rgb}{.6 ,0 ,0}
6 \definecolor{myBlue }{rgb }{.255 ,.41 ,.884}

3.3 Equation Numbering and Referencing

By default, displayed equations (those that are not in-line) which are formated using the equation environment are numbered
while those formatted with the equation* environment and with \[...\] will not be numbered. (There is also a \nonumber
command that you can use in the equation environment and the like.)

This behavior is inconvenient. Sometimes mathematicians prefer to label only those equations that will be referenced and no
others. The mathtools package [17] allows you to use the equation environment (or align and the like) in every case and then
only number those equations which have references. This is accomplished with the following two lines in your preamble:

Tuesday, January 28, 2014 Page 15 of 34

LATEX in the Classroom

1 % These two lines tell the equation environment to number equations only if they are referenced.
2 \usepackage{mathtools}
3 \mathtoolsset{showonlyrefs} % <-- Won ’t work without this line!

Now you can typeset as normal with only two changes. First, use the equation environment for all equations. Second, do not
use the \ref command for equations any more. Instead, use the \eqref command. An example is shown below:

Code:

1 The inner product of class functions α and β is defined as
2 \begin{equation }\label{eq:defn}
3 \left <\ alpha , \beta\right > = \frac {1}{\ vert G \vert} \sum_{g \in G} \alpha(g) \beta(g).
4 \end{equation}
5 It can be shown that if χ and λ are irreducible characters then
6 \begin{equation }\label{eq:orth}
7 \left <\chi , \lambda\right > = \begin{cases} 1 & \text{if } \chi = \lambda \\ 0 & \text{if } \chi \

neq \lambda \end{cases}.
8 \end{equation}
9 The relationship in \eqref{eq:orth} is called \emph{row orthogonality }.

Result:

The inner product of class functions α and β is defined as

〈α,β〉 = 1

|G|

∑
g∈G

α(g)β(g).

It can be shown that if χ and λ are irreducible characters then

〈χ, λ〉 =

{
1 if χ = λ

0 if χ 6= λ
. (4)

The relationship in (4) is called row orthogonality.

This allows you to label every single equation, reference them as you please, and let the numbering take care of itself.

Another useful command for referencing things is the \autoref command (which comes with the hyperref package [24]). This
command tells LATEX to format the word “Equation” with the hyperlink in addition to the equation number. This is made clear
in the following example:

Code:

1 % Only the equation number is formatted.
2 The relationship in \eqref{eq:orth} is called \emph{row orthogonality }.
3

4 % The word "Equation" is typeset along with the equation number.
5 The relationship in \autoref{eq:orth} is called \emph{row orthogonality }.

Result:

The relationship in (4) is called row orthogonality.

The relationship in Equation 4 is called row orthogonality.

The \autoref command works wonderfully if the mathtools package is not used. However, one needs to be careful when
using the \autoref command on equations along with the mathtools package. In my experience, things seem to work fine if

Tuesday, January 28, 2014 Page 16 of 34

LATEX in the Classroom

the mathtools package is loaded (and the \mathtoolsset command is called) before the hyperref package.

The \autoref command also works with other references, as well. In fact, the utility of the \autoref command comes from the
fact that the command itself will figure out the kind of thing that you’re referencing so that you don’t have to worry about it.
References to sections with the \autoref command come out looking like “Section 3.3.” More complicated usage will require
some tweaking, however. For example, if one creates a theorem environment (using the amsthm package [31]) then references to
theorems with the \autoref command will not work properly unless one provides a command called \theoremautorefname.
See the hyperref documentation for more on this.

There are two other packages that are worth mentioning here. The autonum package [14] provides a functionality similar to that
of the mathtools package and the cleveref package [9] provides commands that work like \autoref. When I was learning
how to make these things work I found that mathtools and \autoref worked best for me; you might decide differently.

3.4 Common Preamble

It is often the case that several documents are meant to have identical formatting. Perhaps all quizzes should look the same or
all homework assignments should look the same. This can be done with custom packages or class files, but I’ve started using a
common preamble to accomplish this.

For example, suppose that we’re trying to create twenty homework assignments with the same formatting. It is likely that all of
the formatting and package implementation for these documents will happen in the preamble and the preamble will be nearly
identical for each document. I find it convenient, then, to put the preamble in its own file called (for example) hw_preamble.tex.
An example of such a file might look like this:

1 % This is the entire contents of hw_preamble.tex:
2 %
3 % Add common packages.
4 \usepackage{amsmath}
5 %
6 % geometry creates uniform margins.
7 \usepackage[includeheadfoot ,margin =0.5in]{ geometry}
8 %
9 % Add any necessary custom commands.

10 \newcommand {\ answer }[1]{} % the default behavior of \answer
11 %
12 % It is likely that headers and footers will have common elements.
13 \usepackage{fancyhdr}
14 \pagestyle{fancy}
15 \renewcommand {\ headrulewidth }{0.5 pt}
16 \renewcommand {\ footrulewidth }{0.5 pt}
17 \lhead{\ small Homework Assignment}
18 \chead{}
19 \rhead{}
20 \lfoot{\ small {\emph{Last Updated: \today }}}
21 \cfoot{}
22 \rfoot{\ small {\emph{Page \thepage\ of \pageref{LastPage }}}}

Once the common preamble is in one file, each of the twenty homework assignments will look the same except for the content.
For example, the homework for Section 10.4 might be in a file called hw10_4.tex which looks like:

1 \documentclass{article}
2 \input{hw_preamble}
3 \rhead{\ small Section 10.4} % We put the section number in the header
4 %\ renewcommand {\ answer }[1]{\ par\fbox{Answer: } #1} % uncomment this line to make a key.
5 \begin{document}
6 %

Tuesday, January 28, 2014 Page 17 of 34

LATEX in the Classroom

7 % The content goes here.
8 %
9 \end{document}

An \input command imports the contents of hw_preamble.tex into the preamble and the \rhead command makes a small
tweak in header to reflect that the assignment is for Section 10.4. Here we have also modified the \answer trick from Section 3.1
to fit the situation. In hw_preamble.tex there is a definition of \answer which ignores any input. In order to make a key
we simply re-define the \answer command in the actual document (remember to use \renewcommand here since \answer has
already been defined) to format and print the answer.

4 Images and the Like

Images are terribly important for teachers. You want to be able to use LATEX to ask the homework and quiz questions that you
want to ask instead of formulating the questions that you can ask around the LATEX that you know. Providing a diagram with a
question is essential from time to time.

There are two ways to use images in a document. You can create images using an outside source and then include them into
your document or you can use various packages to have LATEX create an image for you. We will cover both methods.

4.1 Importing Images

The graphicx package [5] allows you to include images that were made from an external source. Once you’ve imported the
package in your preamble, the \includegraphics command allows you to include images. Suppose we have a file called
cat.jpg. It can be displayed as follows:

Code:

1 % Display the image cat.jpg.
2 \begin{center}
3 \includegraphics{cat}
4 \end{center}

Result:

The \includegraphics command places the image right where you tell it without any changes. There are some optional
arguments that help control the size of the image, rotate the image, or clip the image. Examples are shown below:

Tuesday, January 28, 2014 Page 18 of 34

LATEX in the Classroom

1 \includegraphics[scale =0.5]{ cat} % half the original height and width
2 \includegraphics[width=1in]{cat} % fixed width of 1in
3 \includegraphics[height =1in]{cat} % fixed height of 1in
4 \includegraphics[angle =180]{ cat} % rotated by 180 degrees

If you compile your document with pdflatex then you can use any of these file types: .jpg, .png, .pdf, or .eps. It is advisable
to use images with vector graphics (.pdf or .eps) rather than raster graphics (.jpg or .png).

4.2 Tikz

There are several ways to create various images within LATEX. For example, there are ways to use both Gnuplot [33] and Python
[13] within a .tex document. Here we are going to describe how to use the tikz package to create images. You will notice that
there is not a bibliography entry for tikz; this is because it is a part of a larger package called pgf [30].

The pgf package is an extraordinary and powerful package with a wide range of functionality. The documentation [29] alone
is over 700 pages. Here we will give an introduction to the things of which the tikz package is capable. A good reference
for beginners is A very minimal introduction to TikZ by Crémer [8] which is provided in the CTAN documentation for the pgf
package [30].

The first step is to load the tikz package. For more complicated uses of tikz there are other steps required in the preamble, but
for now simply load the tikz package as normal:

1 % Load the tikz package in the preamble.
2 \usepackage{tikz}

For now, all drawings in tikz will happen in the tikzpicture environment. There are other options, but personally I use the
tikzpicture environment almost exclusively - even for advanced uses. This environment is not centered by default; be sure to
use the center environment if it should be centered.

1 % Make sure the tikz package is loaded in the preamble.
2 \begin{tikzpicture}
3 %
4 % This is where the magic happens.
5 %
6 \end{tikzpicture}

A tikzpicture environment is based on nodes. Everything happens within a Cartesian plane centered about some origin. The
choice of origin is merely a reference. For example, if the picture is centered then the whole image will be centered; it will not
center around the origin. Nodes are nothing more than points in this plane. When defining them you can use units if you want.
For example, the node (1in,6em) will give a node which is 1in horizontally from the origin and 6em vertically from the origin.
However, I find it more useful to leave out units and use the default scaling. As a reference, the squares in the grid below have
size of length one “unit” according to tikz.

(0,0)

(0,1)

(1in,6em)

We will start with some of the basic commands which make shapes. Here are some of these commands:

• \draw (0,0) -- (2,1);

Tuesday, January 28, 2014 Page 19 of 34

LATEX in the Classroom

This command draws a line between the nodes (0,0) and (2,1).

• \draw (0,0) rectangle (2,1);

This command draws a rectangle with corners at (0,0) and (2,1).

• \draw (0,0) circle(1.5);

This command draws a circle of radius 1.5 centered at (0,0).

• \draw (0,0) grid (2,1);

This command draws a grid of squares with sides length 1 in the rectangle with corners at (0,0) and (2,1).

• \draw (1,0) arc [radius=2, start angle=90, end angle=225];

This command draws an arc of a circle starting at (1,0) with the specified attributes.

• \draw (0,0) to [out=90,in=195] (3,2);

This command draws a curved line which goes from (0,0) to (3,2). It leaves (0,0) at an angle of 90◦ and enters (3,2)
at an angle of 195◦. I imagine this is an interpolating polynomial subject to tangency conditions but I do not know for
sure.

Some examples are shown below. Note that most of your document cares (at least somewhat) about whitespace. However,
inside of the tikzpicture environment, whitespace - and line breaks in particular - are ignored. Lines are ended with the ;
character.

Code:

1 \begin{tikzpicture}
2 \draw (0,0) grid (13,4);
3 \draw (1,1) -- (2,3);
4 \draw (2.5 ,1.5) rectangle (3.5 ,3.5);
5 \draw (5.5 ,2) circle (1.5);
6 \draw (9.5 ,1.5) arc [radius=1, start angle=0, end angle =135];
7 \draw (10.5 ,1) to [out=90, in=270] (12,3);
8 \end{tikzpicture}

Result:

The scale optional argument can be used to shrink or stretch the entire picture. The code below is identical to the previous
example except for the addition of [scale=0.3]. I believe that this is a linear scaling; that is, in this case height and width are
both 30% of their original size. Note that when text is used (as we will demonstrate later), the text size does not change under
scaling.

Code:

1 \begin{tikzpicture }[scale =0.3]
2 \draw (0,0) grid (13,4);

Tuesday, January 28, 2014 Page 20 of 34

LATEX in the Classroom

3 \draw (1,1) -- (2,3);
4 \draw (2.5 ,1.5) rectangle (3.5 ,3.5);
5 \draw (5.5 ,2) circle (1.5);
6 \draw (9.5 ,1.5) arc [radius=1, start angle=0, end angle =135];
7 \draw (10.5 ,1) to [out=90, in=270] (12,3);
8 \end{tikzpicture}

Result:

The same command used to draw a line can be used to draw connected line segments. If those connected line segments form a
closed curve then you can use the fill argument to fill the curve with a color of your choosing, as shown below:

Code:

1 \begin{tikzpicture}
2 \draw (0,0) --(2,0) --(1,2) --(0,1) --(-1,2) --(-1,0);
3 \draw[fill=gray] (3,0) --(5,0) --(6,2) --(3,0);
4 \end{tikzpicture}

Result:

The example below shows how to add thickness to lines, how to use different line styles, and how to add arrowheads to either
side of the line. Note that the optional argument of the form <key1>-<key2> describes the arrowheads. Make sure that key1
describes the arrowhead at the beginning of the line (not at the left) and key2 describes the arrowhead at the end of the line.

Code:

1 \begin{center}
2 \begin{tikzpicture}
3 \draw[dashdotted ,<->] (0,4) --(10,4);
4 \draw[dashdotdotted ,help lines ,latex -latex] (0 ,3.5) --(10,3.5);
5 \draw[dashed ,ultra thick ,to -to] (0,3) --(10,3);
6 \draw[densely dashed ,very thick ,>->] (0 ,2.5) --(10,2.5);
7 \draw[loosely dashed ,thick ,<<->>] (0,2) --(10,2);
8 \draw[dotted ,semithick ,|<->|] (0 ,1.5) --(10,1.5);
9 \draw[densely dotted ,thin ,|-|] (0,1) --(10,1);

10 \draw[loosely dotted ,very thin ,->] (0 ,0.5) --(10,0.5);
11 \draw[ultra thin ,<-] (0,0) --(10,0);
12 \end{tikzpicture}
13 \end{center}

Result:

Tuesday, January 28, 2014 Page 21 of 34

LATEX in the Classroom

The colors of lines can also be changed. A \draw[red] command will draw a red line.

The node command allows for labeling things and printing text, as shown below:

Code:

1 \begin{center}
2 \begin{tikzpicture}
3 \draw[thick ,<->] (6.3 ,0) --(0,0) --(0,2.3);
4 \draw[help lines] (0,0) grid (6,2);
5 \node at (1,1) {text};
6 \node[above] at (3,1) {N};
7 \node[right] at (3,1) {E};
8 \node[below] at (3,1) {S};
9 \node[left] at (3,1) {W};

10 \node[above right] at (5,1) {NE};
11 \node[below right] at (5,1) {SE};
12 \node[below left] at (5,1) {SW};
13 \node[above left] at (5,1) {NW};
14 \end{tikzpicture}
15 \end{center}

Result:

text
N

E
S

W
NE
SESW

NW

All nodes to this point have been defined in Cartesian coordinates using the notation (<x_pos>,<y_pos>). An alternate nota-
tion, which is very convenient, is to define them in polar coordinates using (<angle>:<radius>). Anything in the tikz package
assumes that angles are in degrees. Nodes can be stored if they are to be reused. In the example below, nodes a, b, and c are
stored and used later.

Code:

1 \begin{center}
2 \begin{tikzpicture}
3 \node (a) at (0,0) {a};
4 \node (b) at (3,0) {b};
5 \node (c) at (1,2) {c};
6 \draw (a)--(b) --(c) --(a);
7 \end{tikzpicture}

Tuesday, January 28, 2014 Page 22 of 34

LATEX in the Classroom

8 \end{center}

Result:

a b

c

Note the behavior of the labels on the nodes. This code places circular nodes with text labels and lines between it are told not
to overlap the text. In fact, they point from the center of one node to the center of the other noe and stop just short of the node
itself. This is ideal behavior when typesetting a commutative diagram, but unfortunate behavior when making a diagram of a
triangle. The solution lies in the \coordinate command as shown below:

Code:

1 \begin{center}
2 \begin{tikzpicture}
3 \coordinate[label=left:{a}] (a) at (0,0);
4 \coordinate[label=right:{b}] (b) at (3,0);
5 \coordinate[label=above:{c}] (c) at (1,2);
6 \draw (a)--(b) --(c) --(a);
7 \end{tikzpicture}
8 \end{center}

Result:

a b

c

Note that calculation can be done within the tikzpicture environment. Arithmetic is allowed and there are certain functions
that can be used (there will be more on this later). This ability to perform calculations along with custom commands can allow
for some very clever tricks. In the example below a variable called \theang is defined which controls the angle of inclination.
This variable is defined to be 20 below but if it is changed to something else then the entire diagram will shift to reflect that
change.

Code:

1 \begin{tikzpicture }[scale =.8]
2 \def\theang {20}
3 \draw
4 ({-3},{(-1/tan(\theang -90))*(-3)+sin(\theang -90)+cos(\theang -90)/tan(\theang -90)})--
5 ({4} ,{(-1/ tan(\theang -90))*(4)+sin(\theang -90)+cos(\theang -90)/tan(\theang -90)});
6 \draw[fill=LightYellow]
7 ({cos(\ theang +(-1) *90)+cos(\ theang +(0) *90)},{sin(\ theang +(-1) *90)+sin(\ theang +(0) *90)})--
8 ({cos(\ theang +(0) *90)+cos(\ theang +(1) *90)},{sin(\ theang +(0) *90)+sin(\ theang +(1) *90)})--
9 ({cos(\ theang +(1) *90)+cos(\ theang +(2) *90)},{sin(\ theang +(1) *90)+sin(\ theang +(2) *90)})--

10 ({cos(\ theang +(2) *90)+cos(\ theang +(3) *90)},{sin(\ theang +(2) *90)+sin(\ theang +(3) *90)})--

Tuesday, January 28, 2014 Page 23 of 34

LATEX in the Classroom

11 ({cos(\ theang +(3) *90)+cos(\ theang +(4) *90)},{sin(\ theang +(3) *90)+sin(\ theang +(4) *90)});
12 \draw[DarkGreen ,ultra thick ,-latex] ({\ theang }:0) --({\theang }:3) node[right]{\vec{F}_f};
13 \draw[DarkGreen ,ultra thick ,-latex] (-90:0) --(-90:2)node[below]{\vec{F}_g};
14 \draw[dashed] ({cos(\theang -90)},{sin(\theang -90)}) --({cos(\theang -90) +2},{sin(\theang -90)});
15 \draw[Red] ({cos(\theang -90) +1.3} ,{ sin(\theang -90)}) arc (0:\ theang :1.3);
16 \draw[Red] ({cos(\theang -90) +1.75* cos(\ theang /2)},{sin(\theang -90) +1.75* sin(\ theang /2)}) node{\ang

{\ theang }};
17 \end{tikzpicture}

Result:

~Ff

~Fg

20◦

These commands alone can make a lot of useful diagrams. Some examples are given in Figure 1. Note that colors are defined
in these examples using the svgnames option in the xcolor package [19].

2 in 3 in

5 in

(a) A generic triangle.

`

h(θ)

60m

40m

θ

(b) A windmill.

34◦
43◦

7
5

ft

d

(c) A gap in a bridge.

35◦

25◦
60◦

(d) How angles add.

Figure 1: Some diagrams from MATH 112 that were made using the tikz package.

Tuesday, January 28, 2014 Page 24 of 34

LATEX in the Classroom

4.3 Graphing Functions

One of the biggest needs that math teachers have when it comes to using images is graphing functions. The obvious way to
place the graph of a function in a document is to use the \includegraphics command that was introduced in Section 4.1. I do
not ever do this myself, but this method should not be discarded. If you have a way of graphing functions (Mathematica [34]
and Matlab [21] are popular choices) then you can easily place those graphics into your document.

I prefer to use the tikz [30] package to create graphs of functions. This preference stemmed from a desire to keep documents
self-contained. I find it inconvenient to keep track of external files. It is harder to make small changes to external files and it is
easier to send a single file to other people than it is to send whole groups of files. I continue to use tikz because I find it to be a
convenient and fully-featured solution to several difficult problems.

One should keep in mind that tikz is not a calculator. It has some basic calculation features but it is not computational
software. As such, there are occasional limitations to what sorts of things that tikz can do. It can handle functions of a
moderate complexity and it can always handle a Taylor approximation. However, for complex functions it is better to use the
features of the pgf package (actually the pgfplots package as we will see later) instead of the tikz package. The downside is
that functions drawn with the tikz package can be decorated using the package’s other features, while functions drawn with
the pgf package will be displayed more like what would be displayed on a graphing calculator.

The tikz package contains a multitude of advanced features for graphing functions. We will only cover one of them here: the
plot command. The syntax of the plot command is shown below; axes have been added for convenience.

Code:

1 \begin{tikzpicture }[scale =0.8]
2 \draw[<->] (-1,0) -- (7,0) node[right]{\ tiny{x }};
3 \draw[<->] (0,-1) -- (0,4) node[above]{\ tiny{y }};
4 \draw plot[domain =0:6] ({\x} ,{0.13*(\x-1)*(\x-3) *(\x-5) +2});
5 \end{tikzpicture}

Result:

x

y

Note that the \draw command actually plots a parametric function. The parameter is \x and the domain argument specifies the
interval on which the parametric function is plotted. That is, the contents of ({<first coord>},{<second coord>}) are what
get plotted as a function of \x. For extremely detailed graphs (maybe something like sin(1/x)) one can include the samples
argument in the plot command to increase the number of discrete points on which the parametric function is evaluated. For
example, a call to \draw plot[domain=0:1,samples=500] ({...},{...}) will plot 500 points on the interval [0, 1] and connect
them with a line.

The \draw command can be augmented as before to create more attractive and visually striking graphs.

Code:

1 \begin{tikzpicture }[scale =0.8]
2 \draw[help lines] (-0.7,-0.7) grid (6.7 ,3.7);

Tuesday, January 28, 2014 Page 25 of 34

LATEX in the Classroom

3 \draw[<->,thick] (-1,0) -- (7,0) node[right]{\ tiny{x}};
4 \draw[<->,thick] (0,-1) -- (0,4) node[above]{\ tiny{y}};
5 \draw[<->,thick ,DarkGreen] plot[domain = -0.1:6.1] ({\x} ,{0.13*(\x-1) *(\x-3) *(\x-5) +2});
6 \end{tikzpicture}

Result:

x

y y = f(x)

Remember that tikz understands certain functions. The ability to do calculation becomes particularly useful when graphing
functions. See the documentation for a complete list of available functions; several examples are shown below:

Code:

1 \begin{tikzpicture}
2 \draw[help lines] (-5.1,-4.1) grid (5.1 ,4.1);
3 \draw[<->] (-5.3,0) --(5.3,0) node[right]{\ tiny{x }};
4 \draw[<->] (0,-4.3) --(0,4.3) node[above]{\ tiny{y }};
5 \begin{scope}
6 \clip (-5.1,-4.1) rectangle (5.1 ,4.1);
7 \draw[ultra thick ,DarkGreen] plot[domain =0:5.2 , samples =100] (\x,{sqrt(\x)});
8 \draw[ultra thick ,DarkBlue] plot[domain = -5.2:5.2 , samples =100] (\x,{pow(\x,2)});
9 \draw[ultra thick ,Red] plot[domain = -5.2:5.2 , samples =100] (\x,{exp(\x)});

10 \draw[ultra thick ,Orange] plot[domain =0.01:5.2 , samples =100] (\x,{ln(\x)});
11 \draw[ultra thick ,Brown] plot[domain =0.005:5.2 , samples =100] (\x,{ log10 (\x)});
12 \draw[ultra thick ,Purple] plot[domain =0.01:5.2 , samples =100] (\x,{log2(\x)});
13 \draw[ultra thick ,Gold] plot[domain = -5.2:5.2 , samples =100] (\x,{abs(\x)});
14 \draw[ultra thick ,Lime] plot[domain = -5.2:5.2 , samples =100] (\x,{sin(\x r)});
15 \draw[ultra thick ,Coral] plot[domain = -5.2:5.2 , samples =100] (\x,{cos(\x r)});
16 \end{scope}
17 \end{tikzpicture}

Result:

Tuesday, January 28, 2014 Page 26 of 34

LATEX in the Classroom

x

y

Note the use of the \clip command. This tells tikz not to print anything outside of the defined rectangle. This is necessary
as y = ex gets very large on [−5, 5] and we don’t want the point (5, e5) printed. The scope environment ensures that the only
things affected by the \clip command are those within it.

To this point, every one of the examples have used the parametric function in the plot command to plot a single valued function.
That is, the plot command has been used in the form (\x,<f(x)>). Of course, this can be used to plot any parametric function.
Plotting ({cos(\x)},{sin(\x)}) will result in (some part of) a circle. One use for this that I have found is the example shown
below:

Code:

1 \begin{tikzpicture }[scale =2]
2 \def\angle {1500} % angle you ’re drawing
3 \def\factor {10} % total available "loops"
4 \def\start {2} % "loop" at which the arc starts
5 \draw[<->] (-1.3,0) --(1.3,0);
6 \draw[<->] (0,-1.3) --(0,1.3);
7 \draw[DarkGreen ,thick] (0,0) circle (1);
8 \draw[Red ,thick] (0,0) --(\angle :1);
9 \draw[->,Red] plot[domain ={360*\ start }:{360*\ start + \angle}, samples =200]({\x}:{\x / (360*\ factor

)});
10 \draw ({\ angle / 2}:{ .85 }) node[Red]{\ tiny{\ang{\ angle }}};
11 \end{tikzpicture}

Result:

Tuesday, January 28, 2014 Page 27 of 34

LATEX in the Classroom

1500◦

Of course, the examples are limitless. Figure 2 gives two final examples of functions graphed with tikz.

x

y
y = f(x)

y = f−1(x)

y = x

(a) A function and its inverse.

x
9

y

y = f(x)

y = g(x)

(9, (f+ g)(9))

g(9)

f(9)

g(9)

(b) Examining how to add two functions.

Figure 2: Some examples of graphing functions with tikz.

4.4 Advanced Tikz Examples

The tikz package offers a whole world of possibilities (don’t you dare close your eyes). Here we explore some of those
possibilities. The code is not provided. You can look up the package yourself or check the source code for this document.

The pgfplots package

It was mentioned that the tikz package is a subset of the pgf package and that it is not always the best way to graph a function.
Here we show some examples of how to use the pgfplots package [12] to graph functions. Truth be told, the pgfplots package
has a more intuitive syntax for these graphs. However, I prefer to use the tikz package whenever possible so that I can utilize
its other conveniences. To use the pgfplots package, put the following lines in the preamble:

1 \usepackage{tikz}
2 \usepackage{pgfplots}

Figure 3 shows two examples of the visual style of graphs produced with the pgfplots package.

Tuesday, January 28, 2014 Page 28 of 34

LATEX in the Classroom

−3 −2 −1 0 1 2 3

5

10

15

x

f(
x
)
=
x
2
−
x
+
4

(a) The graph of a single function y =
f(x) where f(x) = x2 −x+ 4.

−4 −2 0 2 4

−1

−0.5

0

0.5

1

(b) The graph of several functions on
one plot.

Figure 3: Examples of graphs of functions using the pgfplots package.

One thing that the pgfplots package can do that the tikz package cannot do is graph functions in three dimensions. Figure 4
shows an example of such a thing.

0
0.2 0.4 0.6 0.8 1 −1

0

1

−1

0

1

−1

−0.5

0

0.5

1

Figure 4: The graph of z = f(x,y) where f(x,y) = x2 − y2 on a domain of [0, 1]× [−1, 1].

The spy Library

The tikz package comes with several libraries. One of them is the spy library. This library allows you to zoom in on a particular
part of a tikz image. It is not something that I use regularly but it is very handy when I need it. To use the spy library be sure
to add the following lines to your preamble:

1 \usepackage{tikz}
2 \usetikzlibrary{spy}

Figure 5 shows two examples of the types of things the spy library can do.

The fit Library

Another of the tikz libraries is the fit library. Its purpose is to define options for specifying a node to contain a set of coordi-
nates. It is a useful way to highlight things in an equation. I will not go into the details of such things, except to provide the
example in Figure 6. This example was written by Kottwitz [20] and found online. Just like with the spy library, the fit library
is used by putting the following in your preamble:

1 \usepackage{tikz}
2 \usetikzlibrary{fit}

Tuesday, January 28, 2014 Page 29 of 34

LATEX in the Classroom

x

y

x

y

(a) A function which looks periodic on one interval but does not look periodic on a
different interval.

A

0
20

40

60
80100

120

14
0

16
0

18
0

20
0

22
0

240
260 280

300

320

340

A

0
20

40

60
80100

120

14
0

16
0

18
0

20
0

22
0

240
260 280

300

320

340

(b) A protractor measuring a 58◦ angle.

Figure 5: Two examples using the spy library.

M =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

 MT =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Transpose

N
NT

Figure 6: An example of the use of the fit library.

4.5 Figures

Images created with the tikzpicture environment or imported with the \includegraphics command can be placed in a
document on their own. However, in larger documents it can be helpful to place them in a figure environment. This allows
them to be labeled, it provides a convenient command for captioning, and it turns them into a “float” so that LATEX can try to
place them where they fit the best. Any figure which has a label in this document was created within a figure environment.
For example, the code shown below was used to produce Figure 7.

1 \begin{figure }[ht]
2 % Don ’t use the center environment in figures. It adds unwanted space.
3 \centering
4 \includegraphics{cat}
5 \caption{A very pretty kitty .\label{fig:fluffy }}
6 \end{figure}

Of course, a tikzpicture environment can be used in place of the \includegraphics command. The optional argument [ht]
tells the compiler that the figure should be placed exactly where it is in the code (that’s the h) and if that can’t be done then it
should be placed at the top of a page (that’s the t).

Tuesday, January 28, 2014 Page 30 of 34

LATEX in the Classroom

Figure 7: A very pretty kitty.

One may notice that several of the figures in this document have subfigures. For example, Figure 2 contains Figure 2a and
Figure 2b. This is accomplished with the subfig package [7].

5 Final Thoughts

This document is concluded with a list of several other miscellaneous packages that teachers may find useful. No example code
is provided; I leave you to research them on your own.

Crossing things out: When providing solutions for students it can sometimes be nice to “cancel” things out. Conveniently, this
functionality is provided by the cancel package [3]. This is how we typeset the following equation:

x2 + 5x+ 6

x2 − 2x− 8
=

����(x+ 2)(x+ 3)

����(x+ 2)(x− 4)
=
x+ 3

x− 4

Tables: LATEX can format tables by default using the tabular environment. A nice extension of this environment is provided
by the tabularx package [6].

Code: There are many packages available for typesetting code. The key is that you want to be able to type \LaTeX\ without the
command being compiled. This can be accomplished in-line with the \verb command. To typeset \LaTeX\ you simply
type \verb|\LaTeX\|. By default, LATEX provides a verbatim environment for typesetting several lines of code in this
manner. Personally, I prefer the added functionality of the listings package [23] which is what was used to typeset the
code examples in this document.

Make sure to know the difference between when the \verb command and verbatim environments (or the like) are appro-
priate and when you simply want fixed-width font. An easy way to get the font is with the \texttt command. Note that
\verb|monospace| and \texttt{monospace} both render “monospace.” There are advantages and disadvantages to both
commands.

Multiple columns: From time to time it is useful to use multiple columns in a document. This can be accomplished with the
multicol package [22]. It is an excellent and fully-featured package. If you need to increase or decrease the size of margins
temporarily while changing the number of columns, I find that the best solution is to use the adjmulticol package [32].

The boxes used in this document: The boxes used by this document to surround the snippets of code are created with the
tcolorbox package [28]. If you find that the tcolorbox package does not do what you need there is similar function-
ality provided by the mdframed package [10]. The choice between these two excellent packages is a matter of personal
preference.

Presentations: It is my personal opinion that mathematicians should not use anything other than LATEX to typeset projector-
style presentations (or most anything else, really). The popular solutions provided by Google and Microsoft are user
friendly at first, but they are inconvenient for typesetting mathematics. And, frankly, other mathematicians can tell.

Tuesday, January 28, 2014 Page 31 of 34

LATEX in the Classroom

Use the beamer document class [37] to create presentations in LATEX. For those who are already familiar with typesetting
documents using LATEX it is a very smooth transition to learning how to typeset in beamer.

Remember that package load order matters. If you have a document which loads many packages then you need to be careful
about the order of the \usepackage commands. The general rule is that broad packages should go first and narrow packages
should go last. The babel package should be added early so that the rest of your packages know the language that you’re using
and the amsmath package should also be added early because many packages alter functionality that is first implemented there.
It also makes good sense to add the geometry package early.

Sometimes there are unavoidable package conflicts. If two packages both contain the same two command definitions and you
want one from each, then there is no load order that will make that happen. However, keep in mind that there is always a way
to get the commands that you need. The packages that you are using exist somewhere on your computer. In the worst case
scenario you can always open them, find the commands, and place their definitions in the preamble of your own document
which eliminates the need to import the packages.

Tuesday, January 28, 2014 Page 32 of 34

LATEX in the Classroom

References

[1] Comprehensive TeX Archive Network. http://www.ctan.org/, 2014. Visited on January 28, 2014. (Cited on page 1.)

[2] Hendri Adriaens. xkeyval Package. http://www.ctan.org/pkg/xkeyval, 2008. Visited on January 28, 2014. (Cited on
page 8.)

[3] Donald Arseneau. cancel Package. http://www.ctan.org/pkg/cancel, 2013. Visited on January 28, 2014. (Cited on
page 31.)

[4] David Carlisle. enumerate Package. http://www.ctan.org/pkg/enumerate, 1999. Visited on January 28, 2014. (Cited on
page 12.)

[5] David Carlisle. graphicx Package. http://www.ctan.org/pkg/graphicx, 1999. Visited on January 28, 2014. (Cited on
page 18.)

[6] David Carlisle. tabularx Package. http://www.ctan.org/pkg/tabularx, 1999. Visited on January 28, 2014. (Cited on
page 31.)

[7] Steven Douglas Cochran. subfig Package. http://www.ctan.org/pkg/subfig, 2005. Visited on January 28, 2014. (Cited
on page 31.)

[8] Jacques Crémer. A very minimal introduction to TikZ. http://cremeronline.com/LaTeX/minimaltikz.pdf, 2011. Visited
on January 28, 2014. (Cited on page 19.)

[9] Toby Cubitt. cleveref Package. http://www.ctan.org/pkg/cleveref, 2013. Visited on January 28, 2014. (Cited on page 17.)

[10] Marco Daniel. mdframed Package. http://www.ctan.org/pkg/mdframed, 2010. Visited on January 28, 2014. (Cited on
page 31.)

[11] Robin Fairbairns and Huber Partl. parskip Package. http://www.ctan.org/pkg/parskip, 2001. Visited on January 28,
2014. (Cited on page 3.)

[12] Christian Feuersänger. pgfplots Package. http://www.ctan.org/pkg/pgfplots, 2013. Visited on January 28, 2014. (Cited
on page 28.)

[13] Python Software Foundation. Python. http://www.python.org/, 2014. Visited on January 28, 2014. (Cited on page 19.)

[14] Patrick Häcker. autonum Package. http://www.ctan.org/pkg/autonum, 2013. Visited on January 28, 2014. (Cited on
page 17.)

[15] Hans-Martin Münch and Jeffrey Goldberg. lastpage Package. http://www.ctan.org/pkg/lastpage, 2013. Visited on
January 28, 2014. This package is depreciated. (Cited on page 10.)

[16] Hideo Umeki. geometry Package. http://www.ctan.org/pkg/geometry, 2010. Visited on January 28, 2014. (Cited on
page 9.)

[17] Morten Høgholm. mathtools Package. http://www.ctan.org/pkg/mathtools, 2011. Visited on January 28, 2014. (Cited
on page 15.)

[18] Javier Bezos. enumitem Package. http://www.ctan.org/pkg/enumitem, 2009. Visited on January 28, 2014. (Cited on
page 10.)

[19] Uwe Kern. xcolor Package. http://www.ctan.org/pkg/xcolor, 2007. Visited on January 28, 2014. (Cited on pages 15
and 24.)

[20] Stefan Kottwitz. Highlighting elements in matrices. http://www.texample.net/tikz/examples/highlighting-matrix/,
2012. Visited on January 28, 2014. (Cited on page 29.)

[21] MathWorks. Matlab: The Language of Technical Computing. http://www.mathworks.com/products/matlab/, 2014.
Visited on January 28, 2014. (Cited on page 25.)

[22] Frank Mittelback. multicol Package. http://www.ctan.org/pkg/multicol, 2011. Visited on January 28, 2014. (Cited on
page 31.)

[23] Brooks Moses and Jobst Hoffmann. listings Package. http://www.ctan.org/pkg/listings, 2013. Visited on January 28,
2014. (Cited on page 31.)

Tuesday, January 28, 2014 Page 33 of 34

http://www.ctan.org/
http://www.ctan.org/pkg/xkeyval
http://www.ctan.org/pkg/cancel
http://www.ctan.org/pkg/enumerate
http://www.ctan.org/pkg/graphicx
http://www.ctan.org/pkg/tabularx
http://www.ctan.org/pkg/subfig
http://cremeronline.com/LaTeX/minimaltikz.pdf
http://www.ctan.org/pkg/cleveref
http://www.ctan.org/pkg/mdframed
http://www.ctan.org/pkg/parskip
http://www.ctan.org/pkg/pgfplots
http://www.python.org/
http://www.ctan.org/pkg/autonum
http://www.ctan.org/pkg/lastpage
http://www.ctan.org/pkg/geometry
http://www.ctan.org/pkg/mathtools
http://www.ctan.org/pkg/enumitem
http://www.ctan.org/pkg/xcolor
http://www.texample.net/tikz/examples/highlighting-matrix/
http://www.mathworks.com/products/matlab/
http://www.ctan.org/pkg/multicol
http://www.ctan.org/pkg/listings

LATEX in the Classroom

[24] Heiko Oberdiek. hyperref Package. http://ctan.org/pkg/hyperref, 2012. Visited on January 28, 2014. (Cited on pages 15
and 16.)

[25] Patric W. Daily. fullpage Package. http://www.ctan.org/pkg/fullpage, 1999. Visited on January 28, 2014. (Cited on
page 9.)

[26] Phillip S. Hirschhorn. exam Package. http://www.ctan.org/pkg/exam, 2008. Visited on January 28, 2014. (Cited on
page 9.)

[27] Piet van Oostrum. fancyhdr Package. http://www.ctan.org/pkg/fancyhdr, 2004. Visited on January 28, 2014. (Cited on
page 9.)

[28] Thomas F. Sturm. tcolorbox Package. http://www.ctan.org/pkg/tcolorbox, 2014. Visited on January 28, 2014. (Cited on
page 31.)

[29] Till Tantau. The TikZ and PGF Packages; Manual for version 2.0. http://mirrors.ctan.org/graphics/pgf/base/doc/
generic/pgf/pgfmanual.pdf, 2010. Visited on January 28, 2014. (Cited on page 19.)

[30] Till Tantau and Christian Feuersänger. pgf Package. http://www.ctan.org/pkg/pgf, 2008. Visited on January 28, 2014.
Contains the tikz package. (Cited on pages 19 and 25.)

[31] The American Mathematical Society. amsthm Package. http://www.ctan.org/pkg/amsthm, 2004. Visited on January 28,
2014. (Cited on page 17.)

[32] Boris Veytsman. adjmulticol Package. http://www.ctan.org/pkg/adjmulticol, 2011. Visited on January 28, 2014. (Cited
on page 31.)

[33] Thomas Williams and Colin Kelley. Gnuplot. http://www.gnuplot.info/, 2013. Visited on January 28, 2014. (Cited on
page 19.)

[34] Stephen Wolfram. Wolfram Mathematica. http://www.wolfram.com/mathematica/, 2014. Visited on January 28, 2014.
(Cited on page 25.)

[35] Joseph Wright. SIunits Package. http://www.ctan.org/pkg/siunits, 2007. Visited on January 28, 2014. This package is
depreciated. (Cited on page 6.)

[36] Joseph Wright. siunitx Package. http://www.ctan.org/pkg/siunitx, 2013. Visited on January 28, 2014. (Cited on page 5.)

[37] Joseph Wright and Vedran Miletić. beamer Package. http://www.ctan.org/pkg/beamer, 2011. Visited on January 28,
2014. (Cited on page 32.)

Tuesday, January 28, 2014 Page 34 of 34

http://ctan.org/pkg/hyperref
http://www.ctan.org/pkg/fullpage
http://www.ctan.org/pkg/exam
http://www.ctan.org/pkg/fancyhdr
http://www.ctan.org/pkg/tcolorbox
http://mirrors.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://www.ctan.org/pkg/pgf
http://www.ctan.org/pkg/amsthm
http://www.ctan.org/pkg/adjmulticol
http://www.gnuplot.info/
http://www.wolfram.com/mathematica/
http://www.ctan.org/pkg/siunits
http://www.ctan.org/pkg/siunitx
http://www.ctan.org/pkg/beamer

	Basic LaTeX
	Paragraph Behavior
	Horizontal Spacing
	Multi-Line Equations
	Units
	Custom Commands
	Modular Documents

	Quizzes and Exams
	Margins, Headers, and Footers
	Question Numbering
	Spacing
	Answer Keys

	Handouts
	Answer Keys (Again)
	Clickables
	Equation Numbering and Referencing
	Common Preamble

	Images and the Like
	Importing Images
	Tikz
	Graphing Functions
	Advanced Tikz Examples
	Figures

	Final Thoughts

