
M.R.C. vanDongen

Friends
and

LATEX

ii

iii

© 2010 by M.R.C. van Dongen. All rights reserved.

iv

Preface

This book is still in preparation. It provides computer science gradu-
ate (or equivalent) students with an introduction to technical writing
and presenting with LATEX, which is the de-facto standard in computer
science and mathematics. �is includes techniques for writing large and
complex documents and presentations as well as an introduction to the
creation of complex graphics in an integrated manner.

I have tried to minimise the number of classes and style �les which
the students need to know. �is is one of the main reasons why I decided
to use the amsmath package for the presentation of mathematics, and
tikz, pgfplots, and beamer for the creation of diagrams, graphs, and
presentations. Another advantage of this approach is that this simpli-
�es the process of creating a viewable/printable output �le: everything
should work with pdflatex.

Writing a document like this teaches you much about LATEX, which
is why I intend to maintain two versions of this document. One version
which can be used as an ultimate reference manual, and one slimmed
down version which is intended for the students.

�is being a preliminary version, with many chapters still pending
or incomplete, any comments and suggestions about the presentation
and new topics will be much appreciated.

M.R.C. van Dongen
Cork
2010

v

vi

Contents

I Basics 1

1 Introduction to LATEX 3
1.1 Pros and Cons . 4
1.2 Basics . 6

1.2.1 �e TEX Processors 6
1.2.2 From .tex to .dvi and Friends 7
1.2.3 �e Name of the Game 8
1.2.4 Staying in Sync . 8
1.2.5 Writing a LATEX Input Document 8
1.2.6 �e Abstract . 12
1.2.7 Spaces, Comments, and Paragraphs 12

1.3 Document Hierarchy . 13
1.3.1 Minor Document Divisions 14
1.3.2 Major Document Divisions 15
1.3.3 �e Appendix . 16

1.4 Document Management 16
1.5 Labels and Cross-references 17
1.6 Controlling the Style of References 19
1.7 �e Bibliography . 20

1.7.1 Basic Usage . 20
1.7.2 �e bibtex Program 24
1.7.3 �e natbib Package 26
1.7.4 Multiple Bibliographies 28
1.7.5 Bibliographies at End of Chapter 29

1.8 Reference Lists . 29
1.8.1 Table of Contents and Lists of �ings 29
1.8.2 Controlling the Table of Contents 30
1.8.3 Controlling the Sectional Unit Numbering . . 30
1.8.4 Indexes and Glossaries 30

1.9 Class Files . 33
1.10 Packages . 34
1.11 Useful Classes and Packages 35
1.12 Errors and Troubleshooting 35

vii

viii

II Basic Typesetting 37

2 Running Text 39
2.1 Special Characters . 39

2.1.1 Tieing Text . 40
2.1.2 Grouping . 41

2.2 Diacritics . 42
2.3 Ligatures . 43
2.4 Quotation Marks . 43
2.5 Dashes . 44
2.6 Periods . 45
2.7 Emphasis . 45
2.8 Footnotes and Marginal Notes 46
2.9 Displayed Quotations and Verses 47
2.10 Line Breaks . 47
2.11 Controlling the Size . 48
2.12 Controlling the Type Style 49
2.13 Phantom Text . 49
2.14 Alignment . 50

2.14.1 Centred Text . 50
2.14.2 Flushed/Ragged Text 51
2.14.3 Basic tabular Constructs 51
2.14.4 �e booktabs Package 53
2.14.5 Advanced tabular Constructs 54
2.14.6 �e tabbing Environment 56

2.15 Language Related Issues . 57
2.15.1 Hyphenation . 57
2.15.2 Foreign Languages 58
2.15.3 Spell-Checking . 58

3 Lists 59
3.1 Unordered Lists . 59
3.2 Ordered Lists . 61
3.3 �e enumerate Package . 61
3.4 Description Lists . 62
3.5 Making your Own Lists . 63

III Pictures, Diagrams, Tables, and Graphs 67

4 Presenting External Pictures 69
4.1 �e figure Environment 69
4.2 Special Packages . 71

4.2.1 Floats . 71
4.2.2 Legends . 71

4.3 External Picture Files . 71
4.4 �e graphicx Package . 72

ix

4.5 Setting Default Key Values 72
4.6 Setting a Search Path . 73
4.7 De�ning Graphics Extensions 73
4.8 Conversion Tools . 74
4.9 De�ning Graphics Conversion 74

5 Presenting Diagrams with tikz 75
5.1 Why Specify your Diagrams? 75
5.2 �e tikzpicture Environment 75
5.3 �e \tikz Command . 76
5.4 Grids . 77
5.5 Paths . 77
5.6 Coordinate Labels . 78
5.7 Extending Paths . 79
5.8 Actions on Paths . 82

5.8.1 Colour . 83
5.8.2 Drawing the Path 85
5.8.3 Line Width . 85
5.8.4 Line Cap and Join 86
5.8.5 Dash Patterns . 87
5.8.6 Arrows . 88
5.8.7 Filling a Path . 89
5.8.8 Path Filling Rules 90

5.9 Nodes and Node Labels . 91
5.9.1 Prede�ned Nodes Shapes 92
5.9.2 Node Options . 93
5.9.3 Connecting Nodes 95
5.9.4 Special Node Shapes 95

5.10 Coordinate Systems . 97
5.11 Coordinate Calculations 98

5.11.1 Relative and Incremental Coordinates 99
5.11.2 Complex Coordinate Calculations 100

5.12 Options . 102
5.13 Styles . 102
5.14 Scopes . 103
5.15 �e \foreach Command 104
5.16 �e let Operation . 106
5.17 �e To Path Operation . 107
5.18 �e spy Library . 108
5.19 Trees . 108
5.20 Logical Circuits . 110
5.21 Installing tikz . 111

6 Presenting Data with Tables 113
6.1 �e Purpose of Tables . 113
6.2 Kinds of Tables . 113
6.3 �e Anatomy of Tables . 114

x

6.4 Designing Tables . 115
6.5 �e table Environment . 118
6.6 Wide Tables . 119
6.7 Multi-page Tables . 119
6.8 Databases and Spreadsheets 120

7 Presenting Data with Graphs 123
7.1 �e Purpose of Graphs . 123
7.2 Pie Charts . 124
7.3 Introduction to pgfplots 125
7.4 Bar Graphs . 126
7.5 Paired Bar Graphs . 128
7.6 Component Bar Graphs . 129
7.7 Coordinate Systems . 130
7.8 Line Graphs . 132
7.9 Scatter Plots . 134

IV Mathematics and Algorithms 137

8 Mathematics 139
8.1 �e AMS-LATEX Platform 140
8.2 LATEX’s Math Modes . 141
8.3 Ordinary Math Mode . 141
8.4 Subscripts and Superscripts 142
8.5 Greek Letters . 142
8.6 Displayed Math Mode . 143

8.6.1 �e equation Environment 144
8.6.2 �e split Environment 145
8.6.3 �e multline Environment 146
8.6.4 �e gather Environment 147
8.6.5 �e align Environment 147
8.6.6 Intermezzo: Increasing Productivity 148
8.6.7 Interrupting a Display 149
8.6.8 Low-level Alignment Building Blocks 149
8.6.9 �e eqnarray Environment 150

8.7 Text in Formulae . 150
8.8 Delimiters . 150

8.8.1 Scaling Le� and Right Delimiters 151
8.8.2 Bars . 152
8.8.3 Tuples . 152
8.8.4 Floors and Ceilings 153
8.8.5 Delimiter Commands 153

8.9 Fractions . 153
8.10 Sums, Products, and Friends 154

8.10.1 Basic Typesetting Commands 155
8.10.2 Overriding the Basic Typesetting Style 156

xi

8.10.3 Multi-line Limits 157
8.11 Functions and Operators 158

8.11.1 Existing Operators 158
8.11.2 Declaring New Operators 159
8.11.3 Managing Content with the cool Package . . . 160

8.12 Integration and Di�erentiation 160
8.12.1 Integration . 160
8.12.2 Di�erentiation . 161

8.13 Roots . 161
8.14 Arrays and Matrices . 162
8.15 Math Mode Accents, Hats, and Other Decorations . . 163
8.16 Braces . 163
8.17 Case-based De�nitions . 165
8.18 Function De�nitions . 166
8.19 �eorems . 166

8.19.1 Ingredients of �eorems 166
8.19.2 �eorem-like Styles 167
8.19.3 De�ning �eorem-like Environments 168
8.19.4 De�ning �eorem-like Styles 169
8.19.5 Proofs . 170

8.20 Mathematical Punctuation 170
8.21 Spacing and Linebreaks . 172

8.21.1 Line Breaks . 172
8.21.2 Conditions . 172
8.21.3 Physical Units . 173
8.21.4 Sets . 173
8.21.5 More Spacing Commands 174

8.22 Changing the Style . 174
8.23 Symbol Tables . 175

8.23.1 Operation Symbols 175
8.23.2 Relation Symbols 175
8.23.3 Arrows . 175
8.23.4 Miscellaneous Symbols 176

9 Algorithms and Listings 179
9.1 Typesetting Algorithms with algorithm2e 179

9.1.1 Importing algorithm2e 179
9.1.2 Basic Environments 180
9.1.3 Describing Input and Output 181
9.1.4 Conditional Statements 182
9.1.5 �e Switch Statement 183
9.1.6 Iterative Statements 184
9.1.7 Comments . 185

9.2 Typesetting Listings with the listings Package 186

xii

V Automation 191

10 Commands and Environments 193
10.1 Why use Commands . 193
10.2 User-de�ned Commands 195

10.2.1 De�ning Commands Without Arguments . . 195
10.2.2 De�ning Commands With Arguments 196
10.2.3 Fragile and Robust Commands 197
10.2.4 De�ning Robust Commands 198

10.3 �e TEX Processors . 198
10.4 Commands and Arguments 199
10.5 De�ning Commands with TEX 201
10.6 Tweaking Existing Commands with \let 204
10.7 More than Nine Arguments 204
10.8 Introduction to Environments 205
10.9 Environment De�nitions 206

11 Option Parsing 209
11.1 Why Use a 〈Key〉=〈Value〉 Interface? 209
11.2 �e keyval Package . 209
11.3 �e keycommand Package 211

12 Branching 213
12.1 Counters, Booleans, and Lengths 213

12.1.1 Counters . 213
12.1.2 Booleans . 214
12.1.3 Lengths . 215
12.1.4 Scoping . 217

12.2 �e ifthen Package . 217
12.3 �e calc Package . 219
12.4 Looping . 219
12.5 Tail Recursion . 220

13 User-de�ned Styles and Classes 221
13.1 User-de�ned Style Files . 221
13.2 User-de�ned Class Files . 221

VI Miscellany 223

14 Beamer Presentations 225
14.1 Frames . 225
14.2 Modal Presentations . 227
14.3 Incremental Presentations 229
14.4 Visual Alerts . 231
14.5 Adding Some Style . 231

xiii

15 Installing LATEX and Friends 237
15.1 Installing TEX Live . 237
15.2 Con�guring TEX Live . 238

15.2.1 Adjusting the PATH 238
15.2.2 Con�guring TEXINPUTS 238

15.3 Installing Classes and Packages 239
15.4 Installing LATEX Fonts . 240
15.5 Installing Unix Fonts . 240
15.6 Using the fontspec Package 240
15.7 Package Managers . 241

16 Resources 243
16.1 Books about TEX and LATEX 243
16.2 Bibliography Resources . 243
16.3 Articles by the LATEX3 Team 243
16.4 LATEX Articles, Course Notes and Tutorials 244
16.5 METAPOST Articles and Tutorials 244
16.6 On-line Resources . 244
16.7 YouTube Resources . 245
16.8 English . 246

VII References and Bibliography 247

Indices 249
Index of LATEX and TEX Commands 250
Index of Environments . 259
Index of Classes . 261
Index of Packages . 262
Index of Commands and Languages 263

Acronyms 265

Bibliography 267

xiv

List of Figures

1.1 Typical LATEX program 10
1.2 De�ning comments 13
1.3 Using \includeonly and \include. 17
1.4 Using \label and \ref. 18
1.5 Using \pageref. 18
1.6 Using the prettyref package. 20
1.7 A minimal bibliography. 21
1.8 �e \cite command. 22
1.9 Using \cite with an optional argument. 23
1.10 Including a bibliography. 25
1.11 Some BibTEX entries. 25
1.12 �e \citet and \citep commands. 27
1.13 Using the \citeauthor and \citeyear commands. 27
1.14 Minimal letter. 34

2.1 Quotes. 44
2.2 Nested quotations. 44
2.3 Dashes . 45
2.4 Using footnotes. 46
2.5 �e quote environment. 47
2.6 �e verse environment. 48
2.7 Controlling the size. 49
2.8 �e \phantom command. 50
2.9 Using the tabular environment. 53
2.10 Using booktabs rules. 54
2.11 Controlling column widths with an @-expression. 55
2.12 �e tabbing environment. 57
2.13 Advanced use of tabbing environment. 57
2.14 Using the babel package. 58

3.1 �e itemize environment. 60
3.2 Changing the item label. 60
3.3 �e enumerate environment. 61
3.4 Using the enumerate package. 62
3.5 Using the description environment. 62
3.6 list format a�ecting lengths. 63
3.7 A user-de�ned list. 64
3.8 A user-de�ned environment for lists. 64

xv

xvi

4.1 Using the dpfloat package. 71
4.2 Including an external graphics �le. 72

5.1 Drawing a grid. 77
5.2 Creating a path. 78
5.3 Cubic spline in tikz. 80
5.4 Using a dash pattern 87
5.5 Using a dash phase. 87
5.6 �e ‘even odd rule’. 91
5.7 �e ‘nonzero rule’. 91
5.8 Nodes and implicit labels. 92
5.9 Low-level node control. 93
5.10 Node placement. 95
5.11 Drawing lines between node shapes. 95
5.12 �e circle split node style 96
5.13 A node with rectangle style and several parts. . 96
5.14 Using four coordinate systems. 98
5.15 Computing the intersection of perpendicular lines. 98
5.16 Absolute, relative, and incremental coordinates. 99
5.17 Coordinate computations with partway modi�ers.100
5.18 Coordinate computations with partway and dis-

tance modi�ers. 100
5.19 Coordinate computations with projection mod-

i�ers. 100
5.20 Prede�ning options with the \tikzset command.103
5.21 Using scopes . 104
5.22 �e \foreach command. 105
5.23 Simple to path example. 107
5.24 A User-de�ned ‘to path’ style. 108
5.25 Using the spy library. 108
5.26 Drawing a tree. 109
5.27 Using implicit node labels in tree. 109
5.28 Controlling the node style. 110
5.29 Missing tree nodes. 110
5.30 Drawing a half adder with tikz. 112

6.1 Components of a demonstration table. 114
6.2 Creating a table with the booktabs package. . . . 118
6.3 Using the longtable package. 120

7.1 A pie chart. 124
7.2 Using the axis environment. 125
7.3 Sample output of the axis environment. 125
7.4 A bar graph. 127
7.5 Creating a bar graph. 127
7.6 A paired bar graph. 129
7.7 Creating a paired bar graph. 129
7.8 A component bar graph. 131

xvii

7.9 Creating a component bar graph. 131
7.10 A line graph. 132
7.11 Creating a line graph. 133
7.12 A scatter plot. 134
7.13 Creating a scatter plot. 134

8.1 �e \shortintertext command. 149
8.2 �e aligned environment. 149
8.3 ‘Limit’ argument of log-like functions. 158
8.4 Using the amsthm package. 169
8.5 Using the mathematical punctuation commands. 171

9.1 E�ect of the options noline, lined, and vlined. 180
9.2 Using algorithm2e. 181
9.3 Typesetting conditional statements with algo-

rithm2e. 183
9.4 Using algorithm2e’s switch statements. 184
9.5 Creating a partial listing with the listings pack-

age. 187
9.6 Listing resulting from Figure 9.5 187
9.7 Setting new defaults with the \lstset command. 188

10.1 User-de�ned commands. 197
10.2 A program with user-de�ned combinators. 200
10.3 De�ning commands with default arguments. . . 203
10.4 A sectionl unit environment. 205
10.5 Using more than nine arguments. 205
10.6 User-de�ned environment. 206

12.1 A tail recursion-based implementation of a lisp-
like \apply command. 220

14.1 Creating a titlepage with the beamer class. 226
14.2 �e frame title commands. 227
14.3 Using the beamerarticle package. 228
14.4 Using modes. 228
14.5 Using the \pause command. 230
14.6 Using overlay speci�cations. 230
14.7 Adding visual alerts. 231
14.8 Using a beamer theme. 232
14.9 Sample output of beamer’s default theme. 233
14.10 Sample output of beamer’s Boadilla theme. . . . 233
14.11 Sample output of beamer’s Antibes theme. 234
14.12 Sample output of beamer’s Goettingen theme. . 234

15.1 Using the fontspec package. 241

xviii

List of Tables

1.1 Depth values of sectional unit commands. 30
1.2 Using the \index command. 32

2.1 Ten special characters. 40
2.2 Common diacritics. 42
2.3 Other special characters. 43
2.4 Foreign ligatures. 43
2.5 Size-a�ecting declarations and environments. . . 48
2.6 Type style a�ecting declarations and commands. 49
2.7 Using booktabs rules. 54

5.1 �e xcolor colours. 83
5.2 Arrow head types. 89
5.3 Shorthand notation for the \foreach command. 105
5.4 Node shapes provided by logic gate shape libraries.111

6.1 A poorly designed table. 115
6.2 An improved version of Table 6.1. 117

7.1 Allowed values for mark option. 135

8.1 Lowercase Greek letters. 143
8.2 Uppercase Greek letters. 143
8.3 Variable-size delimiters. 154
8.4 Variable-sized symbols. 156
8.5 Log-like functions. 158
8.6 Integration signs. 161
8.7 Math mode accents, hats, and other decorations. 164
8.8 Math mode dot-like symbols. 170
8.9 Positive and negative spacing. 174
8.10 Binary operation symbols. 175
8.11 Relation symbols. 176
8.12 Additional amsmath-provided relation symbols. . 176
8.13 Fixed-size arrow symbols. 177
8.14 Extensible amsmath-provided arrow symbols. . . 177
8.15 Extensible mathtools-provided arrow symbols. . 177
8.16 extensible mathtools-provided arrow symbols. . 178
8.17 Miscellaneous symbols. 178

10.1 How expansion works. 201

xix

xx

12.1 Length units. 215

Part I

Basics

1

Chapter 1
Introduction to LATEX

This chapter is an introduction to LATEX and friends but it is not
about typesetting fancy things. Typesetting fancy things is dealt with
in subsequent chapters. �e main purpose of this chapter is to provide
an understanding of the basic mechanisms of LATEX, using plain text as a
vehicle. A�er reading this chapter you should know how to:

• Write a simple LATEX input document based on the article class.
• Turn the input document into .pdf with the aid of the pdflatex

program.
• De�ne labels and use them to create consistent cross-references

to chapter and sections. �is basic cross-referencing mechanism
also works for tables, �gures, and so on.

• Create a fault-free table of contents with the \tableofcontents
command. Creating a list of tables and a list of �gures works in a
similar way.

• Cite the literature with the aid of the \cite command.
• Generate one or several bibliographies from your citations with

the bibtex program.
• Change the appearance of the bibliographies by choosing the

proper bibliography style.
• Manage the structure and writing of your document by exploiting

the \include command.
• Control the visual presentation of your article by selecting the

right article class options.
• Much, much, more.

Intermezzo. LATEX gives you output documents which looks great and have
consistent cross-references and citations. Much of the creation of the output
documents is automated and done behind the scenes. �is gives you extra
time to think about the ideas you want to present and how to communi-
cate these ideas in an e�ective way. One way to communicate e�ectively is
planning: the order and the purpose of the writing determines how it is
received by your target audience. LATEX’s markup helps you concretise the
purpose of your writing and present it in a consistent manner. As a matter
of fact, LATEX forces you to think about the purpose of your writing and this
improves the e�ectiveness of the presentation of your ideas. All that’s le� to

3

4 Chapter 1

you is determine the order of presentation and provide some extra markup.
To determine the order of your presentation and to write your document
you can treat LATEX as a programming language. �is means that you can
use so�ware engineering techniques such as top-down design and stepwise
re�nement. �ese techniques may also help when you haven’t completely
�gured out what it is you want to write.

�roughout this chapter it is assumed that you are using the Unix
(Linux: ubuntu, debian, …) operating system. Time permitting, a section
will be added on how to run LATEX on di�erent operating systems.

1.1 Pros and Cons
Before we start, it is good to look at arguments in favour of LATEX and
arguments against it. Some of these arguments are based on http://
nitens.org/taraborelli/latex.

Cons �e following are some common and less common arguments
against LATEX.

• LATEX is di�cult. It may take one to several months to learn. True,
learning LATEX does take a while. However, it will save you time
in the long run, even if you’re writing a minor thesis.

• LATEX is not a What You See is What You Get (wysiwyg) word-
processor. Correct, but there are many LATEX Integrated Develop-
ment Environments (ides) and some ides such as eclipse have
LATEX plugins.

• �ere is little support for physical markup. Yes, but for most pa-
pers, notes, and theses in computer science, mathematics, and
other technical and non-technical �elds, there are existing pack-
ages which you can use without having to �ddle with the way
things look. However, if you really need to tweak the output then
you may have to put in extra time, which may slow down the writ-
ing. �en again, you should be able to reuse this e�ort for other
projects.

• Using non-standard fonts is di�cult. �is used to be true. How-
ever, with the arrival of the fontspec package and xelatex using
non-standard fonts is easy. Furthermore, it is more than likely that
for most day-to-day work you wouldn’t want any non-standard
fonts.

• It takes some practice to let text �ow around pictures. �at’s a
tricky one. Usually, you let LATEX determine the positions of your
�gures. As a consequence they may not always end up where you
intended them to be. Sometimes the text in the vicinity of such
�gures doesn’t look nice: the text doesn’t �ow. You can improve
the text �ow by rearranging a few words in adjacent paragraphs
but this does take some practice.

http://nitens.org/taraborelli/latex
http://nitens.org/taraborelli/latex

Introduction to LATEX 5

• �ere are too many LATEX packages, which makes it di�cult to
�nd the right package. Agreed, but most LATEX documents require
only a few core packages, which are easy to �nd. Moreover, asking
a question in the mailing list comp.text.tex usually results in
some quick pointers. You may also �nd this list at http://groups.
google.com/group/comp.text.tex/topics.

• LATEX encourages structured writing and the separation of style
from content, which is not how many people (especially non-
programmers) work. Well, it seems times they are-a-changin’ be-
cause more and more new (new?) communities have started using
LATEX [Burt, 2005; �omson, 2008a; �omson, 2008b; Buchs-
baum and Reinaldo, 2007; Garcia and Buchsbaum, 2010; Breit-
enbucher, 2005; Senthil, 2007; Dearborn, 2006; Veytsman and
Akhmadeeva, 2006]. Some communities have organised and have
created their own websites: http://theotex.blogspot.com/,
http://www-lmmb.ncifcrf.gov/~toms/latex.html, https://
coral.uchicago.edu:8443/display/humcomp/LaTeX, and http:
//www.essex.ac.uk/linguistics/external/clmt/latex4ling/.

Pros �e following are arguments in favour of LATEX:

• LATEX provides state-of-the art typesetting, including kerning, real
small caps, common and non-common ligatures, glyph variants,
…. It also does a very good job at automated hyphenation.

• Many conferences and publishers accept LATEX. In addition they
provide style and class �les which guarantee documents conform-
ing to the required formatting guidelines.

• LATEX is a Turing-complete programming language. �is gives
you almost complete control. For example, you can decide which
things should be typeset and how this should be done.

• With LATEX you can prepare several documents from the same
source �le. Not only lets this control you which text should be
used in which document but also how it should appear.

• LATEX is highly con�gurable. Changing the appearance of your
document is done by choosing the proper document class, class
options, packages, and package options. �e proper use of com-
mands supports consistent appearance and gives you ultimate
control.

• You can translate LATEX to html/ps/pdf/DocBook ….
• LATEX automatically numbers your chapters, sections, �gures, and

so on. In addition it provides cross-referencing support.
• LATEX has excellent bibliography support. It supports consistent

citations and an automatically generated bibliography with a con-
sistent look and feel. �e style of citations and the organisation
of the bibliography is con�gurable.

• �ere is some support for wysiwyg document preparation: lyx
(http://www.lyx.org/), TEXmacs (http://www.texmacs.org/),
…. Furthermore, some editors and ides provide support for LATEX,

comp.text.tex
http://groups.google.com/group/comp.text.tex/topics
http://groups.google.com/group/comp.text.tex/topics
http://theotex.blogspot.com/
http://www-lmmb.ncifcrf.gov/~toms/latex.html
https://coral.uchicago.edu:8443/display/humcomp/LaTeX
https://coral.uchicago.edu:8443/display/humcomp/LaTeX
http://www.essex.ac.uk/linguistics/external/clmt/latex4ling/
http://www.essex.ac.uk/linguistics/external/clmt/latex4ling/
http://www.lyx.org/
http://www.texmacs.org/

6 Chapter 1

e.g., vim, emacs, eclipse, ….
• LATEX is very stable, free, and available on many platforms.
• �ere is a very large, active, and helpful TEX/LATEX user-base.

Good starting points are listed in Section 16.6.
• LATEX has comments.
• �ere’s a very useful package which produces co�ee stains on your

papers [LATEX Co�ee Stains] . Again, this adds consistency to your
output documents.

• Most importantly: LATEX is fun!

1.2 Basics
LATEX[Lamport, 1994] was written by Leslie Lamport as an extension
of Donald Knuth’s TEX program [Knuth, 1990]. It consists of a Turing-
complete procedural markup language and a typesetting processor. �e
combination of the two lets you control both the visual presentation as
well as the content of your documents. �e following three steps explain
how you use LATEX.

1. You write your document in a LATEX (.tex) input (source) �le.
2. You run the latex program on your input �le. �is turns the

input �le into a device independent �le (a .dvi �le). Depending
on your source �le there may be errors which you may have to �x
before you can continue to the �nal step.

3. You view the .dvi �le on your computer or convert it to another
format (usually a printable document format).

1.2.1 �e TEX Processors
Roughly speaking LATEX is built on top of TEX. �is adds extra func-
tionality to TEX and makes writing your document much easier. LATEX
being built on top of TEX, the result is a TEX program. You may get a
good understanding of LATEX by studying TEX’s four processors, which are
basically run in a “pipeline” [Knuth, 1990; Eijkhout, 2007; Abrahams,
Hargreaves and Berry, 2003]. �e following are the main functions of
TEX’s processors.

Input Processor Turns source �le into a token stream. �e resulting
token stream is sent to the Expansion Processor.

Expansion Processor Turns token stream into token stream. Expand-
able tokens are repeatedly expanded until there are no more le�.
�e expansion applies to commands, conditionals, and some prim-
itive commands. �e resulting output is sent to the Execution
Processor.

Execution Processor Executes executable control sequences. �ese ac-
tions may a�ect the state. �is applies, for example, to assign-
ments and command de�nitions. �e Execution Processor also

Introduction to LATEX 7

constructs horizontal, vertical, and mathematical lists. �e �nal
output is sent to the Visual Processor.

Visual Processor Creates .dvi �le. �is is the �nal stage. It turns hori-
zontal lists into paragraphs, breaks vertical lists into pages, and
turns mathematical lists into formulae.

1.2.2 From .tex to .dvi and Friends
Now that you know a bit about how LATEX works, it’s time to study the
programs you need to turn your input �les into readable output. You
may ignore this section if you use an ide because your ide will do all
the necessary things to create your output �le, without the need for user
intervention at the command-line level.

In its simplest form the latex program turns your LATEX input �le
into the device independent �le (.dvi �le), which you can view and turn
into other output formats, including .pdf. Before going into the details
about the LATEX syntax, let’s see how you turn an existing LATEX source
�le into a .dvi �le. To this end, let’s assume you have an error-free LATEX
source �le which is called ‘〈base name〉.tex’. �e following command
turns your source �le into an output �le called ‘〈base name〉.dvi’.
$ latex 〈base name〉.tex Unix Session

With latex you may omit the .tex extension.
$ latex 〈base name〉 Unix Session

�e resulting .dvi output can be viewed with the xdvi program.
$ xdvi 〈base name〉.dvi &

Unix Session

Now that you have the .dvi version of your LATEX program, you may
convert it to other formats. �e following converts 〈base name〉.dvi to
postscript (〈base name〉.ps).
$ dvips -o 〈base name〉.ps 〈base name〉.dvi Unix Session

�e following converts 〈base name〉.dvi to portable document
format (.pdf).
$ dvipdf 〈base name〉.dvi Unix Session

However, by far the easiest to generate .pdf is using the pdflatex
program. As with latex, pdflatex does not need the .tex extension.
$ pdflatex 〈base name〉.tex Unix Session

Intermezzo. If you’re writing a book, a thesis, or an article then generating
.dvi and viewing it with xdvi is by far the quickest. However, there may be
problems with graphics, which may not always be rendered properly. I �nd
it convenient to (1) run the xdvi program in the background (using the &
operator), (2) position the xdvi window over the terminal window which
I’m using to edit the LATEX program, and (3) edit the program with vim. You

8 Chapter 1

can execute shell commands �om within vim by going to command mode
and issuing the command: ‘〈ESC〉:!〈command〉〈RETURN〉’ to execute the
command 〈command〉 or ‘〈ESC〉:!!〈RETURN〉’ for the most recently executed
command.1 �is lets you run latex �om within your editor on the �le
you’re editing. Most Linux Graphical User Interfacess (guis) let you cycle
�om window to window by typing a magic spell: in KDE it is ‘〈ALT〉〈TAB〉’.
Typing this spell lets me quickly cycle �om my editing session to the viewing
sessions and back. Using this mechanism keeps my hands on the keyboard
and saves time, wrists, and elbows.

1.2.3 �e Name of the Game
Just like C, lisp, pascal, java, and other programming languages, LATEX
may be viewed as a program or a language. When referring to the lan-
guage this book usually uses LATEX and when referring to the program it
usually writes latex. However, when writing latex the book actually
means pdflatex because this is by far the easiest way to create viewable
and printable output. Finally, when this book uses LATEX program it
usually means LATEX source �le.

1.2.4 Staying in Sync
�e latex program sometimes needs more than a single run before it
produces its �nal output. �e following explains what happens when
you and latex are no longer in sync.

To create a perfect output �le and have consistent cross-references
and citations, latex also writes information to and reads information
from auxiliary �les. Auxiliary �les contain information about page num-
bers of chapters, sections, tables, �gure, and so on. Some auxiliary �les
are generated by latex itself (e.g., .aux �les). Others are generated by
external programs such as bibtex, which is a program that generates
information for the bibliography. When an auxiliary �le changes then
LATEX may be out of sync. You should rerun latex when this happens.
Normally, latex outputs a warning when it suspects this is required:
$ latex document.tex
… LaTeX Warning: Label(s) may have changed. …
Rerun to get cross-references right.
$

Unix Session

1.2.5 Writing a LATEX Input Document
LATEX is a markup language and document preparation system. It forces
you to focus on the content and not on the presentation. In a LATEX
program you write the content of your document, you use commands
to provide markup and automate tasks, and you import libraries. �e
following explains this in further detail.

1�e emacs program should let you to do similar things.

Introduction to LATEX 9

Content �e content of your document is determined in terms of text
and logical markup. LATEX forces you to focus on the logical struc-
ture of your document. You provide this structure as markup in
terms of familiar notions such as the author of the document, the
title of a section, the body and the caption of a �gure, the start
and end of a list, the items in the list, a mathematical formula, a
theorem, a proof, ….

Commands �e main purpose of commands is to provide markup. For
example, to specify the author of the document you write ‘\author
{〈author name〉}’. �e real strength of LATEX is that it also is a
Turing-complete programming language which lets you de�ne
your own commands. �ese commands let you do real program-
ming and give you ultimate control over the content and the �nal
visual presentation. You can reuse your commands by putting
them in a library.

Libraries �ere are many existing document classes and packages (style
�les). Class �les de�ne rules which determine the appearance of
the output document. �ey also provide the required markup
commands. Packages are best viewed as libraries. �ey provide
useful commands which automate many tedious tasks. However,
some packages may a�ect the appearance of the output document.

�roughout this book, LATEX input is typeset in a style which is remi-
niscent of the layout of a computer programming language input �le.
�e style is very generous when it comes to inserting redundant space
characters. Whilst not strictly necessary, this input layout has several
advantages:

Recognise structure Carefully formatting your input helps you recog-
nise the structure of your LATEX source �les. �is makes it easier
to locate the start and end of sentences and higher-level building
blocks such as environments. (Environments are explained further
on.)

Mimic output By formatting the input you can mimic the output. For
example when you design a table with rows and columns you can
align the columns in the input. �is makes it easier to design the
output.

Find errors �is is related to the previous item. Formatting may help
you �nd the cause of errors more quickly. For example, you can
reduce the number of candidate error locations by commenting
out entire lines. �is is much easier than commenting out parts
of lines, which usually requires many more editing operations.
Especially if your editor supports “multiple undo/redo operations”
this makes locating the cause of errors very easy.

10 Chapter 1

Typical LATEX program
Figure 1.1 \documentclass[a4paper,11pt]{article}

% Use the mathptmx package.
\usepackage{mathptmx}

\author{A.˜U. Thor}
\title{Introduction to \LaTeX}
\date{\today}

\begin{document} % Here we go.
\maketitle
\section{Introduction}

The start.
\section{Conclusion}

The end.
\end{document}

Figure 1.1 depicts a typical example of a LATEX input program. For
this example all spaces in the input have been made explicit by type-
seting them with the symbol ‘ ’, which represents a single space. �e
symbol ‘ ’ is called visible space. In case you’re wondering, the command
\textvisiblespace typesets the visible space.

�e remainder of this section studies the example program in more
detail. Spaces are no longer made explicit.

�e third line in the input program is a comment. Comments start
with a percentage sign (%) and last until the end of the line. Comments,
as is demonstrated in the input program, may also start in the middle of
a line.

�e following command tells LATEX that your document should be
typeset using the rules determined by the article document class.
\documentclass[a4paper,11pt]{article} LATEX Input

You can only have one document class per LATEX source �le. �e
\documentclass command determines the document class. �e com-
mand takes one required argument, which may be a single character or
a sequence of characters inside braces (curly brackets). �e argument
is the name of the document class. In our example the required argu-
ment is article so the document class is article. You usually use the
\documentclass command on the �rst line of your LATEX input �le.

In our example, the \documentclass command also takes an optional
argument. An optional argument is passed inside the square brackets
immediately a�er the command (this is standard). Optional arguments
are called optional because they may be omitted. If you omit them then
you should omit the square brackets. In our example the ‘a4paper,11pt’
are options of the \documentclass command. �e \documentclass
command passes these options to the article class. �is sets the default

Introduction to LATEX 11

page size to A4 with wide margins and sets the font size to 11 point.
�e following command includes a package called mathptmx.

\usepackage{mathptmx} LATEX Input

�e mathptmx package sets the default font to Times Roman. �is
is a very compact font, which may save you precious pages in the �nal
document. Using the font is especially useful when you’re �ghting against
page limits.

Packages may also take options. �is works just as with document
classes. You pass the options to the package by including them in square
brackets a�er the \usepackage command

�e following three commands, which are best used in the preamble
of the input document, are logical markup commands. �ese commands
do not produce any output but they de�ne the author, title, and date of
our article.
\author{A.˜U. Thor}
\title{Introduction to \LaTeX}
\date{\today}

LATEX Input

�e command \LaTeX in the argument of the \title command is
for typesetting LATEX. �e purpose of the tilde (~) is explained further
on in this chapter. For the moment you may assume that it typesets a
single space.

�e title is typeset by the \maketitle command. Usually, you put
this command at the start of the document environment, which is the text
between the \begin{document} and the \end{document}. You separate
author names with the \and command in the argument of the \author
command:
\author{T.˜Dee \and T.˜Dum} LATEX Input

You acknowledge friends, colleagues, and funding institutions by
including a \thanks command as part of the argument of the \author
command. �is produces a footnote consisting of the argument of the
\thanks command.
\author{Sinead\thanks{You’re a luvely audience.}} LATEX Input

If you wish to build your own titlepage, then you may do this with
the titlepage environment. �is environment gives you complete con-
trol and responsibility. �e \titlepage command and the titlepage
environment may only be used a�er the \begin{document}.
\begin{document}

\begin{titlepage}
…

\end{titlepage}
...

\end{document}

LATEX Input

For the article class, as well as for most other LATEX classes, you
write the main text of the document in the document environment. �is

12 Chapter 1

environment starts with ‘\begin{document}’ and ends in ‘\end{document}
’. We say that text is “in” the document environment if it is between the
‘\begin{document}’ and ‘\end{document}’. �e text before ‘\begin{
document}’ is called the preamble of the document. Sometimes we call
the text which is in the document environment the body of the document.

De�nitions and con�gurations should be provided in the preamble.
�e text in the document environment de�nes the content. In the body
of your document you may use the commands that are de�ned in the
preamble. (More generally, you may de�ne commands almost anywhere.
You may use them as soon as they’re de�ned.)

�e body of the document environment in the following example
de�nes a rather empty document consisting of a title, two sections, and
two sentences. �e title is generated by the \maketitle command. �e
sections are de�ned with the \section command. Each section contains
one sentence. �e text ‘The start.’ is in the �rst section. �e text ‘The
end.’ is in the last.
\begin{document} % Here we go.

\maketitle
\section{Introduction}

The start.
\section{Conclusion}

The end.
\end{document}

LATEX Input

1.2.6 �e Abstract
Many documents have an abstract, which is a short piece of text describ-
ing what is in the document. Typically, the abstract consists of a few lines
and a few hundred words. You specify the abstract as follows.
\begin{abstract}

This document is an introduction to \LaTeX.
…

\end{abstract}

LATEX Input

In an article the abstract is typically positioned immediately a�er
the \maketitle command. Abstracts in books are usually found on a
page of their own.

Some class �les may provide an \abstract command that de�nes
the abstract. �ese class �les may require that you use the \abstract
command in the document preamble. �e position of the abstract in
the output �le is determined by the class.

1.2.7 Spaces, Comments, and Paragraphs
�e paragraph is one of the most important basic building blocks of your
document. �e paragraph formation rules depend on how latex treats
spaces, empty lines, and comments. Roughly, the rules are as follows.2

2Here it is assumed that the text does not contain any commands.

Introduction to LATEX 13

De�ning comments
Figure 1.2 This is the first sentence

of the first paragraph.
The second sentence of this
paragraph ends in the word
‘elephant’.

This is the first sentence
of the second pa%comment
ragraph.

The second sentence of this
paragraph
ends in the word ‘%eleph
ant’.

�is is the �rst sentence of
the �rst paragraph. �e sec-
ond sentence of this paragraph
ends in the word ‘elephant’.
�is is the �rst sentence of the
second paragraph. �e sec-
ond sentence of this paragraph
ends in the word ‘ant’.

In its default mode, latex treats a sequence of more than one space as if
it were a single space. �e end of line is the same as a space. However:

• An empty line acts as an end-of-paragraph speci�er.
• A percentage character (%) starts a comment which ends at the

end of the line.
• Spaces at the start of a line following a comment are ignored.

If you understand the example in Figure 1.2 then you probably un-
derstand these rules. In this example, the input is to the le� and the
resulting output to the right. �is convention is used throughout this
book, except for Chapter 5, which presents pictures to the le� and LATEX
input to the right.

1.3 Document Hierarchy
�e coarse-level logical structure of your document is formed by the
parts in the document, chapters in parts, sections in chapters, subsections
in sections, subsubsection in subsections, paragraphs, and so on. �is
de�nes the document hierarchy. Following [Lamport, 1994], we shall
refer to the members of the hierarchy as sectional units.

Intermezzo. �e sectional units are crucial for presenting e�ectively. For
example, you break down the presentation of a thesis by giving it chapters.
�e chapters should be ordered to ease the �ow of reading. �e titles of
the chapters are also important. Ideally chapter titles should be short, but
most importantly each chapter title should describe what’s in its chapter.
To the reader a chapter title is a great help because it prepares them for
what’s in the chapter which they’re about to read. A good chapter title is
like an ultimate summary of the chapter. It prepares the reader’s mindset
and helps them digest what’s in the chapter. If you are a student writing a
thesis then good chapter titles are also important because they demonstrate
your writing intentions.

14 Chapter 1

Within chapters you present your sections in a similar way, by carefully
breaking down what’s in the chapter, by carefully arranging the order, and
by carefully providing proper section titles. And so on.

1.3.1 Minor Document Divisions

LATEX provides the following sectional units:

part Optional unit which is used for major divisions.

chapter A chapter in a book or report.

sections A section, subsection, or subsubsection.

paragraph A named paragraph. Here paragraph is a small unit in a
section.

subparagraph A named subparagraph. Here subparagraph is a small
unit in a paragraph.

None of these sectional units are available in the letter class. LATEX pro-
vides a command for each sectional unit that marks the start and the title
of the sectional unit. �e following shows how to de�ne a chapter called
‘Foundations’ and a section called ‘Notation’. �e remaining commands
work analogously.
\chapter{Foundations}

\section{Notation}

LATEX Input

When LATEX processes your document it numbers the sectional units.
In its default mode it will output these numbers before the titles. For
example, this section, which has the title ‘Document Hierarchy’, has
the number 1.3. LATEX also supplies starred versions of the sectional
commands. �ese commands suppress the numbers of the sectional
units. �ey are called starred versions because their names end in an
asterisk (*). �e following is an example of the starred versions of the
\chapter and \section commands.
\chapter*{Main Theorems}

\section*{A Useful Lemma}

LATEX Input

All sectional unit commands take an optional argument. If you
supply this argument it replaces the title of the sectional unit in the table
of contents. �is is useful if the real title is very long.
\chapter[Going to Wales]%

{My Amusing Adventures in
L{}lanfairpwl{}lgwyngyl{}lgogerychw%
yrndrobwl{}l{}l{}lantysiliogogogoch}

LATEX Input

Introduction to LATEX 15

1.3.2 Major Document Divisions
Books and theses typically consist of �ont matter, main matter, and back
matter. Some journal or conference article styles also require front, main,
and back matter. �e following is based on [Lamport, 1994, Page 80].

Front matter Main information about the document: a half and main
title page, copyright page, preface or foreword, table of contents,
….

Main matter �e main body of the document.

Back matter Further information about the document and other sources
of information: index, a�erword, bibliography, acknowledge-
ments, colophon, ….

�e commands \frontmatter, \mainmatter, and \backmatter indi-
cate the start of the front, main, and back matter. �e following arti�cial
example shows how they may be used. Notice that the example does not
include any text.
\begin{document}

\frontmatter
\maketitle
\tableofcontents

\mainmatter
\chapter{Introduction}
\chapter{Conclusion}

\backmatter
\chapter*{Acknowledgement}
\addcontentsline{toc}{chapter}{\bibname}
\bibliography{db}

\end{document}

LATEX Input

In the example, the command \bibliography inserts the bibliogra-
phy. �e command is explained in Section 1.7. �e command \addcon-
tentsline inserts an entry for the bibliography in the table of contents.

Notice that the layout of the LATEX program is such that it gives you
a good overview of the structure of the program.

Intermezzo. If you are writing a thesis then you should consider starting
by writing down the chapter titles of your thesis �rst. Your titles should be
good and, most importantly, they should be self-descriptive: each chapter
title should describe what’s in its chapter. Make sure you arrange the titles
in the proper order. �e order of your chapters should maximise the �ow
of reading. �ere should be no forward referencing, so previous chapters
should not rely on de�nitions of concepts which are de�ned in subsequent
chapters.

A useful tool in this process is the table of contents. �e following is how
you use it: (1) open your LATEX source �le, (2) add a \tableofcontents

16 Chapter 1

command at the start of your document body, (3) insert your chapter titles
with the \chapter command, (4) run latex twice (why?), and (5) view the
table of contents in your browser. Only when you’re happy with your titles
and their order, should you start writing what is in the chapters. Remember
that one of the �rst things the members of your thesis committee will do is
study your table of contents. Better make sure they like it.

Note that you may design your chapters in a similar way. Here you
start by putting your section titles in the right order. Writing a thesis like
this is just like writing a large program in a top-down fashion and �lling in
the blanks using stepwise re�nement.

1.3.3 �e Appendix
Some documents have appendices. To indicate the start of the appendix
section in your document, you use the \appendix command. A�er that,
you use the default commands for starting a sectional unit.
\appendix
\chapter{Proof of Main Theorem}

\section{A Useful Lemma}

LATEX Input

1.4 Document Management
LATEX input �les have a tendency to grow rapidly. If you don’t add addi-
tional structure then you will lose control over the content even more
rapidly. �e following three solutions help you stay in control:3

Ide Use a dedicated LATEX ide. A good ide should let you edit an entire
sectional unit as a whole, move it around, and so on. It also should
provide a high-level view of the document.

Folding editor �ese are editors which let you de�ne hierarchical folds.
A fold works just like a sheet of paper. By folding the fold you
hide some of the text. By unfolding the fold or by “entering” a
fold you can work on the text that’s in the fold.

Folds may be used as follows. At the top level of your LATEX doc-
ument you de�ne folds for the top-level sectional units of your
document. Within these folds, you de�ne folds for the sub-level
sectional units, and so on. By creating folds like this you make the
structure of your LATEX document more explicit, thereby making
it easier to maintain your document. For example, re-ordering
sectional units is now an easy operation.

Files LATEX has commands which let you include input from other �les.
By putting the contents of each top-level sectional unit in your
LATEX document in a separate �le, you can also make the structure

3If you know other solutions then I’d like to learn from you.

Introduction to LATEX 17

Using the \includeonly and
\include commands. �e ar-
gument of the \includeonly
command in the preamble is
a list consisting of two �le
names. �ese two �les are the
only �les which are included
by the \include commands
in the body of the document class. �e remaining �les are not included, which saves time when latex is run.

Figure 1.3 \includeonly{Abstract.tex,MainResults.tex}
\begin{document}

\include{Abstract.tex}
\include{Introduction.tex}
\include{Notation.tex}
\include{MainResults.tex}
\include{Conclusion.tex}

\end{document}

in your document more explicit, making it much easier to see the
structure.

LATEX provides three commands which are related to �le inclu-
sion. �e �rst command is \input. �is command does not pro-
vide much �exibility and it is used on its own. Basically, \input{
〈file〉} inserts what’s in the �le 〈file〉 at the “current” position.
�e two remaining commands are \includeonly and \include.
�ese commands provide more �exibility but they are used in
tandem. �e command \includeonly{〈file list〉} is used in
the (document) preamble. It takes one argument, which is a list of
the �les which may be included further on in the document. To
include a �le, 〈file〉, at a certain position you use the command
\include{〈file〉} at that position. If 〈file〉 is in 〈file list〉
then it will be included. Otherwise the �le will not be included.
You can use the command \include several times and for several
�les. �e advantage of this conditional �le inclusion mechanism
is that it saves precious time when working on large documents
because non-included �les require no latex processing.

Figure 1.3 provides an example with several \include commands.
�e command \includeonly at the top of the example tells LATEX
that only the \include statements for the �les Abstract.tex and
MainResults.tex should be processed.

1.5 Labels and Cross-references
An important aspect of writing a document is cross-referencing, i.e. provid-
ing references to sectional units, references to tables and �gures, and so
on. Needless to say, LATEX provides support for e�ective cross-referencing
with ease. �is section explains the basics for cross-referencing at the doc-
ument hierarchy level. �e mechanism works similar for cross-referencing
�gures, tables, theorems, and other notions. Note that this section does
not study citations. Citations are studied in Section 1.7.

�e basic commands for cross-referencing are the commands \label
and \ref.

18 Chapter 1

Using \label and \ref.
Figure 1.4 \chapter{Introduction}

A short conclusion is
presented in
Chapter~\ref{TheEnd}.

\chapter{Conclusion}
\label{TheEnd}

1 Introduction
A short conclusion is pre-
sented in Chapter 2.

2 Conclusion

Using \pageref.
Figure 1.5 \chapter{Introduction}

A short conclusion is
presented in
Chapter~\ref{TheEnd}.

The conclusion starts on
Page~\pageref{TheEnd}.

\chapter{Conclusion}
\label{TheEnd}

1 Introduction
A short conclusion is pre-
sented in Chapter 2. �e con-
clusion starts on Page 1.

2 Conclusion

\label{〈label〉}
�is de�nes a logical label, 〈label〉, and associates the label with the

current environment, i.e. the environment which the \label command is
in. At the top level, the environment is the current sectional unit. Inside
a given theorem environment it is that theorem environment, inside a
given figure environment it is that figure environment, and so on.
Once de�ned, the logical label becomes a handle, which you may use to
reference “its” environment. �e argument of the \label command may
be any sequence of “normal” symbols. �e only restriction is that the
sequence be unique.

\ref{〈label〉}
�is command substitutes the number of the environment of the label
〈label〉. For example, if 〈label〉 is the label of the second chapter then
\ref{〈label〉} results in ‘2’, if 〈label〉 is the label of the third section in
Chapter 1 then \ref{〈label〉} results in ‘1.3’, and so on.

Figure 1.4 demonstrates how to use the \label and the \ref com-
mands. In this example, the tilde symbol (~) is used to prevent LATEX
from putting a line-break a�er the word ‘Section’. In e�ect it ties the
words ‘Section’ and the number which is generated by the \ref com-
mand. Tieing text is studied in more detail in Section 2.1.1.

�e command \pageref{〈label〉} substitutes the page number “of ”
the environment of 〈label〉. Figure 1.5 demonstrates how to use the
\pageref command.

If you compile a document which references an unde�ned label then
latex will notice this error, complain about it in the form of a warning
message, but tacitly ignore the error. Furthermore, it will put two ques-
tion marks in the output document. �e position of the question marks
corresponds to the position in the input that references the label. �e
question marks are typeset in a bold face font: ??. Even if you fail to
notice the warning message this still makes it possible to detect the error.

Introduction to LATEX 19

It should be clear that properly dealing with newly de�ned or deleted
labels requires some form of two-pass system. �e �rst pass detects the
label de�nitions and the second pass inserts the numbers of the labels.
When Lamport designed LATEX he decided that a two-pass system was
too time consuming. Instead he decided to compromise:

• Label de�nitions are processed by writing them to the auxiliary
�le for the next session.

• Label references are only considered valid when the labels are
de�ned in the auxiliary �le of the current session.

• If an error occurs, information about labels may not be written to
the auxiliary �le.

Note that with this mechanism latex cannot know about newly de�ned
labels even if a label is referenced at a position which comes a�er the
de�nition of the label. �is is a common cause of confusion. For example,
when latex processes a reference to a label which is not de�ned in the
current auxiliary �le, it will always output a message warning about new
or unde�ned labels. �e warning is output regardless of whether the
label is de�ned in the current input �le (as opposed to its being the
current auxiliary �le). In addition latex will put two question marks
where the label is referenced in the text. To the novice user it may seem
that they or latex have made an error. However, running latex once
more should usually solve the problem and should get rid of the warning
message and the question marks.

1.6 Controlling the Style of References
�e labelling mechanism is elegant and easy to use but you may still run
into problems from a document management perspective. For example,
in our previous example, we wrote ‘Chapter~\ref{TheEnd}’, thereby
hard-coding the word ‘Chapter’. If for some reason we decided to change
‘Chapter’ to ‘Chap.’ for all references to chapters then we would have to
make a change for each reference to a chapter in our source document.

To overcome these problems, and for consistent referencing, it is
better to use the prettyref package. Using this package adds a bit of in-
telligence to the cross-referencing mechanism. �ere are four ingredients
to the new cross-referencing mechanism.

1. You introduce classes of elements. Within each class the elements
should be referenced in the same way. For example, the class
of equations, the class of �gures, the class of chapters, the class
consisting of sections, subsections, and subsubsections, and so on.

2. You choose a unique pre�x for the labels of the classes. For exam-
ple, ‘eq’ for equations, ‘fig’ for �gures, ‘ch’ for chapters, ‘sec’ for
sections, subsections, and subsubsections, and so on. Here the
pre�xes are the �rst few letters of the class members but this is
not required.

20 Chapter 1

Using the prettyref
package. �e \newrefformat
commands de�ne three
classes of labels: ‘ch’, ‘sec’,
and ‘fig’. �e command
\newrefformat has two ar-
guments. �e �rst argument
determines the class and the
second determines how the
command typesets labels
from that class. For example,
labels starting with ‘ch:’ are
typeset as ‘Chapter’ followed by the number of the label.

Figure 1.6 \usepackage{prettyref}
\newrefformat{ch}{Chapter~\ref{#1}}
\newrefformat{sec}{Section~\ref{#1}}
\newrefformat{fig}{Figure~\ref{#1}}
\begin{document}

\chapter{Introduction}
In \prettyref{ch:Main@Results}
we present the main results.

\chapter{Main Results}
\label{ch:Main@Results}
…

\end{document}

3. You use the \newrefformat command to specify how each class
should be referenced. You do this by telling the command about
the unique pre�x of the class and the text that should be used for
the reference. For example, ‘\newrefformat{ch}{Chapter~\ref{
#1}}’ states that the unique label pre�x ‘ch’ is for a class of elements
that have references of the form ‘Chapter~\ref{#1}’, where ‘#1’ is
the logical label of the element (including the pre�x). As another
example, ‘\newrefformat{id}{\ref{#1}}’ gives you the same
reference you get it you apply \ref to the label.

4. You use \prettyref instead of \ref. �is time the labels are of the
form ‘〈prefix〉:〈label〉’. For example, ‘\prettyref{fig:fractal}
’, ‘\prettyref{ch:Introduction}’, and so on.

Changing the style of the cross-references of a class now only requires
changing one call to \newrefformat. Clearly, this is a better cross-
referencing mechanism. Since prettyref is a package, it should be
included in the preamble of your LATEX document. Figure 1.6 provides a
complete example of the prettyref mechanism.

1.7 �e Bibliography

1.7.1 Basic Usage
Most scholarly computer science works have citations and a bibliography.
�e purpose of the bibliography is to provide details of the works that are
cited in the text. �e purpose of the citation is to acknowledge the cited
work and to inform your readers how to �nd the work. In computer
science the bibliography is usually at the end of the work. However, in
some scienti�c communities it is common practice to have a bibliography
at the end of each chapter in a book. Other communities (e.g., history)
use note systems. �ese systems use numbers in the text which refer to
footnotes or to notes at the end of the chapter, paper, or book.

Introduction to LATEX 21

A minimal bibliography.
Figure 1.7 [Lamport, 1994] L. Lamport. LATEX: A Document Preparation System.

Addison-Wesley, 1994.
[Knuth, 1990]D. E. Knuth. �e TEXbook. Addison-Wesley, 1990. �e

source of this book is freely available from http://www.ctan.org/
tex-archive/systems/knuth/tex/.

�e bibliography entries are listed as ‘〈citation label〉 〈bibliography
content〉’. �e 〈citation label〉 of a given work is used when the work is
cited in the text. �e 〈bibliography content〉 lists the relevant informa-
tion about the work. Figure 1.7 presents an example of two entries in a
bibliography. For this example, the citation labels are typeset in boldface
font inside square brackets.

Even within a single work there may be di�erent styles of citations.
Parenthetical citations are usually formed by putting one or several cita-
tion labels inside square brackets or parentheses. However, there are also
other forms of citations which are derived from the information in the
citation label.

Within one single bibliography the bibliography content of di�erent
kinds of works may di�er. For example, entries of journal articles have
page numbers but book entries do not.

Bibliographies in di�erent works may also di�er. �ey may have
di�erent kinds of (citation) labels and di�erent information in the bib-
liography content. �e order of presentation of the entries in the bib-
liographies may also be di�erent. For example, entries may be listed
alphabetically, in the order of �rst citation in the text, ….

In LATEX the style of the bibliography and labels is con�gurable.
Labels may appear as:

Numbers �is style results in citations which appear as ‘[〈number〉]’ in
the text.

Names and years �is style results in citations which appear as ‘[〈name〉,
〈year〉]’ in the text.

…

Labels as Numbers Labels as numbers are very compact. �ey don’t
disrupt the “�ow of reading”: they’re easy to skip. Unfortunately, labels
as numbers are not very informative. You have to look up which work
corresponds to the number in the bibliography. �is may be annoying
because it hinders the reading process. What is worse, labels as numbers
lack so much information content that you may have to look up the
number several times. However, hyperlinks in electronic documents
somewhat reduce this problem.

Labels as Names and Years Labels as names and year are longer than
labels as numbers. �ey are more disruptive to the reading process: they

http://www.ctan.org/tex-archive/systems/knuth/tex/
http://www.ctan.org/tex-archive/systems/knuth/tex/

22 Chapter 1

�e \cite command.
Figure 1.8 The \LaTeX{} package was

created by Leslie Lamport%
˜\cite{Lamport:94}
on top of Donald Knuth’s
\TeX{} program%
˜\cite{Knuth:1990}.

�e LATEX package was cre-
ated by Leslie Lamport [Lam-
port, 1994] on top of Donald
Knuth’s TEX program [Knuth,
1990].

are more di�cult to “skip”. However, labels as names and years are more
informative. If you’re familiar with the literature then usually there’s no
need to go to the bibliography to look up the label. Even if you have to
look up which work corresponds to a label you will probably remember
it the next time you see the label. Compared to labels as numbers this is
a great advantage.

Traditionally, labels for citations appeared as numbers in the text.
�e main reason for doing this was probably to keep the printing costs
low. Nowadays, printing costs are not always relevant.4 For example,
paper is not as expensive as before. Also many documents are distributed
electronically. Some journals and universities require speci�c bibliogra-
phy style/format.

�e \bibliographystyle command tells LATEX which style to use
for the bibliography. �e bibliography style called 〈style〉, is de�ned in
the �le ‘〈style〉.bst’. �e following demonstrates how you use the \bib-
liographystyle command for selecting the bibliography style called
‘named’, which is the style that is used in this book. �ough this is not
required, it is arguably a good idea to put the \bibliographystyle com-
mand in the preamble of your document. �e bibliography style named
requires the additional package named, which explains why the additional
command \usepackage{named} is used in the example.
\bibliographystyle{named}
\usepackage{named}

LATEX Input

�e following are a few commonly used bibliography styles. �ist
list is based on [Lamport, 1994, pages 70–71].

plain Entries are sorted alphabetically. Labels appear as numbers in the
text.

alpha Entries are sorted alphabetically. Labels are formed from sur-
names and year of publication (e.g., Knut66).

abbrv Entries are very compact and sorted alphabetically. Labels appear
as numbers in the text.

Citing a work in LATEX is similar to referencing a section. Both mech-
anisms use logical labels. For referencing you use the \ref command but

4But we should think about the environmental e�ects of using more paper than
necessary.

Introduction to LATEX 23

Using \cite with an optional
argument.

Figure 1.9 More information about the
bibliography database
may be found in%
˜\cite[Appendix˜B]

{Lamport:94}.

More information about the
bibliography database may be
found in [Lamport, 1994, Ap-
pendix B].

for citations you use the \cite command. �e argument of the \cite
command is the logical label of the work you cite.

Figure 1.8 provides an example. �e example involves two logical
labels: ‘Lamport:94’ and ‘Knuth:1990’. Each of them is associated with
a work in the bibliography. �e �rst label is the logical label of a book
by Lamport; the second that of a book by Knuth. As it happens the
names of the labels are similar to the resulting citation labels but this is
not required. �e command ‘\cite{Lamport:94}’ results in the citation
‘[Lamport, 1994]’. Here ‘Lamport, 1994’ is the citation label of Lam-
port’s book in the bibliography. �is label is automatically generated by
the BibTEX program. �is is explained further on.

�e reason for putting an empty group (the two braces) a�er the
\LaTeX and \TeX commands is technical. �e following explains this in
more detail. In LATEX a group is treated as a word. However, LATEX ignores
spaces a�er most commands, including \TeX and \LaTeX. Without the
empty groups, there would not have been proper inter-word spacing
between ‘LATEX’ and ‘package’ and between ‘TEX’ and ‘program’ in the
�nal output. However, adding the empty groups a�er the commands
results in the proper inter-word spacing.

It may not be immediately obvious, but in the example of Figure 1.8
the text ‘Lamport’ on Line 2 in the input is still tied to the command
‘\cite{Lamport:94}’ which is on the following line. �e reason is that
the comment following the text ‘Lamport’ makes LATEX ignore all input
until the next non-space character on the next line.

You can also cite parts of a work, for example a chapter or a �gure.
�is is done by passing an optional argument to the \cite command
which speci�es the part. �e example in Figure 1.9 demonstrates how
you do this.

�e following commands are also related to the bibliography.
\refname

�is results in the name of the bibliography section. In the article
class, the command \refname is initially de�ned as ‘References’.

\renewcommand{\refname}{〈other name〉}
�is rede�nes the command \refname to 〈other name〉. �e \renew-
command may also be used to rede�ne other existing commands. It is
explained in Chapter 10.

\nocite{〈list〉}
�is produces no text but writes the entries in the comma-separated

list 〈list〉 to the bibliography �le. If you use this command, then you
should consider making it very clear which works in the bibliography

24 Chapter 1

are not cited in the text. For example, some readers may be interested
in a discussion of these uncited works, why they are relevant, and so on.
�ey may get very frustrated if they can’t �nd citations to these works in
your text.

1.7.2 �e bibtex Program
Since bibliographies are important and since it’s easy to get them wrong,
some of the work related to the creation of the bibliography has been au-
tomated. �is is done by BibTEX. �e BibTEX tool requires an external
human-readable bibliography database. �e database may be viewed as a
collection of records. Each record de�nes a work that may be listed in
the bibliography. �e record de�nes the title of the work, the author(s)
of the work, the year of publication, and so on. �e record also de�nes
the logical label of the work. �is is the label you use when you \cite
the work.

�e advantage of using BibTEX is that you provide the information
of the entries in the bibliography and that BibTEX generates the text
for the bibliography. �is guarantees consistency and ease of mind.
For example, changing the style of the bibliography is a piece of cake.
Furthermore, the BibTEX database is reusable and you may �nd BibTEX
descriptions of many scholarly works on the web. A good startig point is
http://citeseer.ist.psu.edu/.

Generating the bibliography with BibTEX is a multi-stage process,
which requires an external program called bibtex. �e bibtex program
is to BibTEX what the latex program is to LATEX. �e following explains
the process.

1. You specify the bibliography with the \bibliography command.
�e command takes one argument which is the basename of the
BibTEX database, so if you use \bibliography{〈db〉} then your
database is 〈db〉.bib.

2. You \cite works in your LATEX program. Your logical labels
should be de�ned by some BibTEX record.

3. You run latex. �is writes the logical labels to an auxiliary �le.
4. You run bibtex as follows:

$ bibtex 〈document〉 Unix Usage

Here 〈document〉 is the basename of your top-level LATEX docu-
ment. �e bibtex program will pick up the logical labels from the
auxiliary �le, look up the corresponding records in the BibTEX
database, and generate the code for LATEX’s bibbliography. A com-
mon mistake of bibtex users is that they add the ‘.tex’ extension
to the basename of the LATEX source �le. It is not clear why this is
not allowed.

5. You run latex twice (why?) and Bob’s your uncle.

It is important to understand that you (may) have to run bibtex when
(1) new citation labels are added, when (2) existing citation labels are

http://citeseer.ist.psu.edu/

Introduction to LATEX 25

Including a bibliography.
Figure 1.10 \documentclass[11pt]{article}

% Use bibliography style named.
% Requires the file named.bst.
\bibliographystyle{named}
% Requires the package named.sty.
\usepackage{named}
\begin{document}

% Put in a citation.
This cites˜\cite{Knuth:1990}.
% Put the reference section here.
% It is in the file db.bib.
\bibliography{db}

\end{document}

Some BibTEX entries.
Figure 1.11 @Book{Lamport:94,

author = {Lamport, Leslie},
title = {\LaTeX: A Document Preparation System},
year = {1994},
isbn = {0-021-52983-1},
publisher = {Addison-Wesley},

}

@Book{Strunk:White:1979,
author = {Strunk, W. and

White, E.˜B.},
title = {The Elements of Style},
publisher = {Macmillan Publishing},
year = {1979},

}

removed, and when (3) you change the BibTEX records of works in your
bibliography. Each time you run bibtex should be followed by two more
latex runs.

Figure 1.10 provides an example. �e LATEX source in this example
depends on a BibTEX �le called ‘db.bib’.

Figure 1.11 presents an example of two entries in a BibTEX database
�le. �e example associates the logical label ‘Lamport:94’ with Lam-
port’s LATEX book and the logical label ‘Strunk:White:1979’ with the
book about elements of style. �e author, title, year of publication,
International Standard Book Number (isbn), and the publisher of the
book are also speci�ed in the entries. Depending on the style which is
used to generate the bibliography, some of this information may or may
not appear in the references. Notice that the author names are speci�ed
by �rst providing the surname and then providing the �rst name(s). �e
surname and �rst name(s) are separated with a comma. �e second en-
try in the example shows that multiple authors are separated with the

26 Chapter 1

keyword ‘and’.
Now that you know how to use the bibtex program, let’s see what

you can put in the BibTEX database. �e following list is not exhaustive.
For a more accurate list you may wish to read [Fenn, 2006; Lamport,
1994]. �e following is based on [Lamport, 1994, Appendix B].

@Article: An article from a journal or magazine.

Required entries author, title, journal, and year.

Optional entries volume, number, pages, month, and note.

@Book: A book with an explicit publisher.

Required entries author or editor, title, publisher, and year.

Optional entries volume, number, series, ….

@InProceedings: A paper in a conference proceedings.

Required entries author, title, booktitle, publisher, and year.

Optional entries pages, editor, volume, number, series, ….

@Proceedings: �e proceedings of a conference.

Required entries title and year.

Optional entries editor, volume, number, series, organisation,
….

@MastersThesis: A Master’s thesis.

Required entries author, title, school, and year.

Optional entries type, address, month, and note.

@PhDThesis: A Ph.D. thesis.

Required entries author, title, school, and year.

Optional entries type, address, month, and note.

….

An impressive list of BibTEX style examples may be found at http://
www.cs.stir.ac.uk/~kjt/software/latex/showbst.html.

1.7.3 �e natbib Package
�ere are several problems with the basic LATEX citation mechanism. �e
natbib package overcomes some of them. It also provides a more �exible
citation mechanism.

http://www.cs.stir.ac.uk/~kjt/software/latex/showbst.html
http://www.cs.stir.ac.uk/~kjt/software/latex/showbst.html

Introduction to LATEX 27

�e \citet and \citep com-
mands.

Figure 1.12 \citet{Knuth:1990}
describes \TeX.

The ultimate guide to \TeX{}
is˜\citep{Knuth:1990}.

Knuth (1990) describes TEX. �e
ultimate guide to TEX is (Knuth,
1990).

Using the \citeauthor and
\citeyear commands.

Figure 1.13 \citeauthor{Knuth:1990}
wrote˜\cite{Knuth:1990}
in˜\citeyear{Knuth:1990}.

Knuth wrote (Knuth, 1990) in
1990.

• �e natbib package distinguishes between parenthetical and tex-
tual citations. A parenthetical citation is similar to the default
LATEX citation. �ey are mainly used to provide a reference to
the work: leaving them out should leave the grammar of the sen-
tence intact. With natbib you get parenthetical citations with
the \citep command. Textual citations play an active rôle in the
sentence: leaving them out should result in grammatical errors.
With natbib you get such citations with the \citet command.
Figure 1.12 demonstrates how these commands work.

• �e package also provides the command \citeauthor and \citeyear.
�e �rst command gives you the author(s) and the second the
year of a citation. Figure 1.13 shows how to use these commands.

• An important improvement is that natbib lets you capitalise “von”
parts in surnames. To achieve this you use similar commands as
before. However, this time the relevant commands start with an
upper case letter. �e following demonstrates how this works.
\Citeauthor{Beethoven:ninth}
is most famous for his Ninth Symphony%
˜\Citet{Beethoven:ninth}.

Pesonally, I prefer his Sixth Symphony%
˜\Citet{Beethoven:sixth}.

LATEX Input

• Finally, natbib lets you specify the style of the labels which are
used for the citation in the text. By default natbibuses parentheses
for parenthetical citations.

• ….

You can get information about the natbib package by executing the
following command.

$ texdoc natbib Unix Usage

Getting help for other packages and classes works similarly. You may
download the natbib package from the Comprehensive TEX Archive
Network (ctan), which may be found at http://www.ctan.org. If you
are looking for other classes and packages then ctan is also the place to
be.

http://www.ctan.org

28 Chapter 1

1.7.4 Multiple Bibliographies
�is section explains how you create documents with more than one
bibliography. �e multibbl, multibib, and bibtopic packages sup-
port multiple bibliographies. �e following explains how you use the
multibbl package.

Suppose you want separate bibliographies for books and articles
(other bibliographies are created analogously). �e following explains
what you do on the LATEX side.

1. You include the multibbl package. �is is done in the usual way.
2. �e multibbl package requires a unique name for each bibliogra-

phy. You specify these names with the \newbibliography com-
mand. Let’s them books and articles.
\newbibliography{books}
\newbibliography{articles}

LATEX Input

3. Using the \bibliographystyle command — it is rede�ned by the
multibbl package — you de�ne a bibliography style for the bibli-
ographies. �e following uses the same style for the bibliographies
but this is not required.
\bibliographystyle{books}{named}
\bibliographystyle{articles}{named}

LATEX Input

4. You put citations in your document with the rede�ned \cite
command.
The ultimate guide to \TeX{} is%
˜\cite{books}{Knuth:1990}.

LATEX Input

�is time \cite takes two arguments. �e �rst argument is the
name of the bibliography. �e second argument is the usual cita-
tion label. Optional arguments are handled as per usual.
\cite[Chapter˜2]{articles}{Fenn:2006}
describes how to use \BibTeX.

LATEX Input

5. To create the bibliography, you use the rede�ned \bibliography
command.
\bibliography{books}{db}{Books about \LaTeX}
\bibliography{articles}{db}{Articles about \LaTeX}

LATEX Input

Compared to the original \bibliography command, the new
commands takes two more arguments. As before \bibliography
{〈name〉}{〈db〉}{〈title〉} inserts a bibliography. �is time, the
�rst argument is the name of the bibliography. �e second argu-
ment is the basename of the BibTEX database �le. �e previous
example, uses the same BibTEX database for the bibliographies
but this is not a requirement. �e last argument is the title of the
bibliography. It also appears in the table of contents.

6. It is usually useful to add an extra line to the table of contents that
indicates the start of the bibliographies. �e following example

Introduction to LATEX 29

shows how you add the word ‘Bibliographies’ to the table of con-
tents with the starred version of the \part command. (Remember
that the starred version does not result in a number.)
\part*{Bibliographies}
\bibliography{books}{db}{Books about \LaTeX}
\bibliography{articles}{db}{Articles about \LaTeX}

LATEX Input

We’re done with the work at the LATEX level. �is time we use BibTEX
and apply it to the names of the bibliographies.
$ bibtex books
$ bibtex articles

Unix Usage

1.7.5 Bibliographies at End of Chapter

Some documents require a bibliography at the end of each chapter.
Should you require them then the packages chapterbib and bibunits
may be useful.

To Do

1.8 Reference Lists

1.8.1 Table of Contents and Lists of �ings

�is section explains how to include a table of contents and reference lists
in your document. Here a reference list is a list which tells you where (in
the document) you may �nd certain things. Common examples are a
list of �gures, a list of tables, and so on. LATEX also lets you de�ne other
reference lists. �e following example, which should be easy enough
to understand, shows how you include a table of contents, and lists of
�gures and tables.
\begin{document}

\maketitle
\include{Abstract.tex}
\clearpage
\tableofcontents
\listoffigures
\listoftables
...

\end{document}

LATEX Input

In the example, the \clearpage command inserts a pagebreak a�er
the �rst \include command. As a side-e�ect it also forces any �gures and
tables that have so far appeared in the input to be printed. �ere is also a
command called \cleardoublepage, which works similarly. However,
in a two-sided printing style, it also makes the next page a right-hand
side (odd-numbered) page, producing a blank page if necessary.

30 Chapter 1

Depth values of sectional unit
commands. �e �rst column
in the table lists the sectional
unit commands. For each
command, the correspond-
ing value of the \tocdepth
counter is listed in the sec-
ond column. �at of the
\secnumdepth counter value
is listed in the last column.

Table 1.1 Sectional
Unit Command \tocdepth \secnumdepth

\part -1 1
\chapter 0 2
\section 1 3
\subsection 2 4
\subsubsection 3 5
\paragraph 4 6
\subparagraph 5 7

1.8.2 Controlling the Table of Contents
�e counter \tocdepth (counters are discussed in Chapter 12) gives
some control over what is listed in the table of contents. �e value of
the counter controls the depth of last sectional level that is listed in the
table of contents. �e value 0 represents the highest sectional unit, 1 the
next sectional unit, and so on.

By setting the value of \tocdepth to 〈depth〉 you limit the depths
of the sectional units that are listed in the table of contents from 0
to 〈depth〉. For example, if you’re using the book class, then using 0
for 〈depth〉will allow parts and chapters in the table of contents, but not
sections. As another example, if you’re using the article class, then using
2 for 〈depth〉 will only list sections, subsections, and subsubsections in
the table of contents. You set the counter \tocdepth to 〈depth〉 with the
command ‘\setcounter{\tocdepth}{〈depth〉}’.

1.8.3 Controlling the Sectional Unit Numbering
�e counter \secnumdepth is related to the counter \tocdepth. Its value
determines the depth of the the sectional units that are numbered. So by
setting the counter \secnumdepth to 3, you tell LATEX to number parts,
chapter, and sections, and tell it to stop numbering subsections and less
signi�cant sectional units.

Table 1.1 lists the sectional unit commands and the corresponding
numbers for the counters \tocdepth and \secnumdepth.

1.8.4 Indexes and Glossaries
If you are writing a book or a thesis, you probably want to include an
index or glossary of some kind. Getting it to work may take a while.
�e remainder of this section explains how to create an index. �e
mechanism for glossaries is similar.

Unfortunately, LATEX’s default index mechanism only allows you to
have one single index. �e multind package lets you create several index
lists. �e package works as follows:

1. You associate each index with a �le name. You do this by passing

Introduction to LATEX 31

passing the basename of the �le to the command \makeindex.
\makeindex{programs}
\makeindex{authors}

LATEX Input

2. You insert the indexes with the \printindex command.
\printindex{programs}{Index of Programs}
\printindex{authors}{Index of Authors}

LATEX Input

�e �rst argument of \printindex is the name of the correspond-
ing index. �e second name is the title of the index. �e title also
appears in the table of contents.

3. You de�ne the index entries. You use the \index command to
de�ne what is in the indexes. �e following is a simple example
which creates an entry ‘TeX’ in the index for the programs.
Knuth\index{authors}{Knuth}

is the author of \TeX\index{programs}{TeX}.

LATEX Input

Behind the scenes the \index command writes information to the
auxiliary �les authors.idx and programs.idx. In the following
step we shall use the makeindex program to turn it into �les which
can be included in our �nal document.

4. You process the .idx �les with the program makeindex. �is
is similar to using bibtex for generating the bibliography. �e
following demonstrates how to use the program.
$ makeindex authors
$ makeindex programs

Unix Session

�e remainder of this section explains how you create more complex
indexes with the multind package. �e multind package rede�nes the
\index command. �e rede�ned command takes one more argument.
�e �rst argument of the rede�ned command determines the name of an
auxiliary �le which is used to to construct the index. �e last argument
of the rede�ned command describes the index entry. �e following is
based on [Lamport, 1994, Appendix A.2].

\index{〈name〉}{〈entry〉}
�is creates an index entry for 〈entry〉. �e entry also lists the page

number.
\index{〈name〉}{〈entry〉!〈subentry〉}

�is creates a subentry 〈subentry〉 for the index entry 〈entry〉. It also
lists the page number.

\index{〈name〉}{〈entry〉!〈subentry〉!〈subsubentry〉}
�is creates a sub-subentry 〈subsubentry〉 for subentry 〈subentry〉 for
the index entry 〈entry〉. It also lists the page number.

\index{〈name〉}{〈entry〉|see{〈other entry〉}}
�is creates a cross-reference to 〈other entry〉 in the entry for 〈entry〉.
�is does not result in a page number for 〈entry〉.

\index{〈name〉}{〈entry for sorting〉@{〈entry for printing〉}}
�is results in an entry for 〈entry for printing〉 in the index list. �e

32 Chapter 1

Creating indexes with the
\index command. �e table
to the le� lists the last argu-
ment of the \index command
and the corresponding page
in the output document. So
if you’re using the unmodi-
�ed \index command then
the second column in the ta-
ble corresponds to the �rst ar-
gument of \index. However,
if you’re using the multind
package then the column cor-
responds to the command’s
second argument. �e output
to the right is the resulting in-
dex.

Table 1.2 Page Last argument of the \index command

1 lecture notes
2 programs
4 lard

2 latex@\LaTeX
3 lambda@λ

5 sausages!boerewors
6 sausages!salami
2 programs!latex
6 programs!bibtex

2 index|(
6 index|)

8 salami|see{sausages}
8 boerewors|see{sausages}
8 boereworst (Dutch)|see{boerewors}

Index
boerewors, see sausages
boereworst (Dutch), see boerewors

index, 2–6

λ, 3
lard, 4
LATEX, 2
lecture notes, 1

programs, 2
bibtex, 6
latex, 2

salami, see sausages
sausages

boerewors, 5
salami, 6

LATEX Output

position in the index is determined by 〈entry for sorting〉. �is is useful,
for example, if 〈entry for printing〉 contains mixed upper- and lowercase
letters or if it contains other characters. For example,

• \index{〈name〉}{twenty@20};
• \index{〈name〉}{twenty@xx};
• \index{〈name〉}{beta@β}; or
• \index{〈name〉}{command@\textbackslash command}.

�ere is one more construct which is useful for topics which cover
a page range. To create an entry for topic 〈topic〉 for a page range, you
start the range with the command \index{〈name〉}{〈topic〉|(} and you
close the range with the command \index{〈name〉}{〈topic〉|)}.

Table 1.2 presents an example of the \index command. �e le� of
the �gure depicts the last argument of the \index commands and the
current page of the LATEX output. It is assumed that the �rst argument
of the \index command is the same. �e right of the �gure depicts the
resulting index. Notice that the entries for ‘programs’ and ‘sausages’ both
have subentries. However, the entry for ‘programs’ has a page number
whereas the entry for ‘sausages’ does not. To understand this di�erence
you need to know that the page number for top-level entries is generated
by commands of the form \index{〈name〉}{〈entry〉}. Since there is
such a command for ‘sausages’ but not for ‘programs’ this explains the
di�erence. More information about the \index command may be found
in [Lamport, 1994, Appendix A].

Introduction to LATEX 33

1.9 Class Files
As explained before, each top-level LATEX document corresponds to
a document class. �e document class is determined by the required
argument of \documentclass command in your LATEX document.
\documentclass{〈document class name〉} LATEX Input

Each document class is de�ned in a class �le. Class �les de�ne the
general rules for typesetting the document. It is recalled that you may
pass options to classes. �is is done by putting the options inside the
square brackets following the command \documentclass. If you have
multiple options then you separate them with commas.

�e extension of class �les is .cls. �e following are some standard
class �les.
article �e basic article style. �e top-level sectional unit of this class

is the section.

book �e basic book style. �e top-level sectional unit of this class is the
chapter. �e book class also provides the commands for indicating
the start of the front, main, and back matter.

report �e basic report style. �e top-level sectional unit of this class
is the chapter.

letter �e basic style for letters. �is class has no sectional units. �e
letter is written inside a letter environment, which takes one
required argument which is the address of the person you are writ-
ing the letter to. In addition there are commands for specifying
the address of the writer, the signature, the opening and closing
lines, the “carbon copy” list, and enclosures and postscriptum.
More detailed information about the letter class may be found
in [Lamport, 1994, Page 84–86] and on http://en.wikibooks.
org/wiki/LaTeX/Letters. Figure 1.14 presents a minimal exam-
ple of a letter.

�e following options are typically available for the previous class
�les.
11pt Uses an 11 point font size instead of the 10 point size, which is

the default.

12pt Uses a 12 point font size.

twoside Output a document which is printed on both sides of the paper.

twocolumn Output a document which has two columns.

draft Used for dra� versions. �is option makes LATEX indicate hy-
phenation and justi�cation problems by putting a little square in
the margin of the problem line.

final Used for the �nal version.

http://en.wikibooks.org/wiki/LaTeX/Letters
http://en.wikibooks.org/wiki/LaTeX/Letters

34 Chapter 1

Minimal letter.
Figure 1.14 \documentclass{letter}

% Sender details.
\signature{T.˜Dee}
\address{Give Cash\\Dublin}

\begin{document}
% Addressee. A double backslash generates a newline.
\begin{letter}{Get Cash\\Cork}

\opening{Dear Sir/Madam:}

Please make a cash donation to our party.

We look forward to the money.

\closing{Yours Faithfully,}
\ps{P.S.\ Send it now.}
\encl{Empty brown envelope.}
\cc{Paddy.}

\end{letter}
\end{document}

1.10 Packages
Document classes are fairly minimal. Usually, you need some additional
commands for doing your day-to-day document preparation. �is is
where packages (originally called style �les) come into play. Packages have
the following purpose.

Provide commands De�ne or rede�ne a useful command. Usually, this
adds some extra functionality.

Change settings Tweak some default document settings. Usually, this
a�ects the layout.

�e extension of packages is .sty. You include the package which is
de�ned in the �le 〈style〉.sty as follows.

\usepackage{〈style〉} LATEX Input

Some packages accept options. You pass them to the package using
the same mechanism as with class �les. Multiple options are separated
using commas. �e following shows how to pass the options ‘first’ and
‘second’ to the �ctional package counter.
\usepackage[first,second]{counter} LATEX Input

To �nd out about the options you have to read the documentation.
Remember that texdoc (see Page 27) helps you locate and read the
documentation.

Introduction to LATEX 35

1.11 Useful Classes and Packages
�ere are hundreds, if not thousands, of existing classes and packages
(packages are also known as style �les). �e following are some useful
classes and packages.5

listings Including program listings [Heinz and Moses, 2007].

url Typesetting urls [Arseneau, 2010].

prettyref Consistent typesetting cross-references [Ruland, 2007].

amsmath Typesetting tools from the American Mathematical Society
(ams) [American Mathematical Society, 2002].

fourier Sets the text font to Utopia Regular and the math font to
Fourier [Bovani, 2005].

graphicx Including graphics [D. P. Carlisle, 2003].

coverpage User-de�ned coverpages [Mühlich, 2006].

fancyhdr User-de�ned headers and footers [Oostrum, 2004].

lastpage De�nes a command for getting the last page number. �is is
especially useful for M/N page numbers [Goldberg, 2010].

memoir �is class provides support for writing books. �e class comes
with lots and lots of options for �netuning the typesetting [Wil-
son, 2010].

keyval

xkeyval Supports parsing of key=val lists [D. Carlisle, 1999b; Adriaens,
2008].

classicthesis Nice package for thesis [Miede, 2010].

mathtools More precise typesetting of math [Høgholm, 2010].

1.12 Errors and Troubleshooting
Errors and texmf.cnf. To Do.

5If you have other favourites then please let me know.

36 Chapter 1

Part II

Basic Typesetting

37

Chapter 2
Running Text

This chapter explains everything you’ve always wanted to know
about writing text, aligning it, and changing text appearance. It is recalled
from Chapter 1 that LATEX is implemented on top of TEX, which is a
rewriting machine which turns token streams into token streams. Some
of the character tokens in the input stream have a special meaning to
TEX (and LATEX). �ese tokens are studied in Section 2.1.

Having studied the special tokens we are ready to do some fancy type-
setting. We start with some sections about diacritics, ligatures, dashes,
emphasis, footnotes and marginal notes, quotes and quotations. If you’re
not familiar with some of these notions then don’t worry because they are
explained further on in this chapter. �e next sections are about chang-
ing the size of the text, changing the type style of the text, and phantom
(invisible) text. �e remaining sections cover the most important text
alignment techniques and language related issues.

2.1 Special Characters

�is section studies ten characters which have a special meaning to TEX.
When TEX sees these characters as tokens in the input stream, then it
usually does not typeset them but, instead, changes state. �e remainder
of this section brie�y explains the purpose of the tokens and how you
typeset them as characters in the output.

Table 2.1 depicts the tokens, their meaning, and the command to
typeset them. We have already studied the start-of-comment token (%)
and the backslash (\), which starts control sequences. Typsetting a back-
slash is done with the commands \textbackslash and \backslash. �e
latter command is only used when specifying mathematical formulae.
It is described in Chapter 8. �e command argument reference token
is described in Chapter 10. �e alignment tab (&) is described in Sec-
tion 2.14.3. �is token usually indicates vertical alignment positions in
array-like structures consisting of rows and columns. �e math mode
switch token ($), the subscript token (_), and the superscript token (ˆ)
are described in Chapter 8. �e three remaining tokens are described in
the remainder of this section.

39

40 Chapter 2

�e characters in the �rst
column have a special mean-
ing to LATEX. �e purpose
of the characters is listed in
the column ‘Purpose’. �e
last column lists the com-
mand which produces the
character. �e command
\textbackslash is used when
typesetting normal text. �e
command \backslash is used
when typesetting mathemat-
ics.

Table 2.1 Character Purpose Command

Formal parameter \#
$ Math mode switch \$
% Start of comment \%
& Alignment tab \&
˜ Text tie token \textasciitilde
_ Math subscript _
ˆ Math superscript \textasciicircum
{ Start of group \{
} End of group \}
\ Start of command \textbackslash or \backslash

2.1.1 Tieing Text
Remember that LATEX is a large rewriting machine which repeatedly turns
token sequences into token sequences. At some stage it turns a token
sequence into lines. �is is where LATEX (TEX really) determines the line
breaks. �e tilde token (~) de�nes an inter-word space which cannot be
turned into a line break. As such it may be viewed as an operator which
ties words.

�e following example demonstrates two important applications of
the tilde operator: it prevents unpleasant linebreaks in references and
citations.
… Figure%

˜\ref{fig:list@format}
depicts the format of a list.

It is a reproduction of%
˜\cite[Figure˜6.3]{Lamport:94}.

LATEX Usage

It is usually not too di�cult to decide where to use the tie operator.
�e following are some concrete examples, which are taken from [Knuth,
1990, Chapter 14].

• References to named parts of a document:

– Chapter~12,
– Theorem~1.5,
– Lemmas 5 and~6,
– ….

• Between a person’s forenames and between multiple surnames:

– Donald~E. Knuth,
– Luis~I.\ Trabb~Pardo,
– Bartel~Leendert van~der~Waarden,
– Charles~XII,
– ….

Running Text 41

• Between math symbols in apposition with nouns:

– dimension~d,
– string~s of length~l,
– ….

Here the construct $〈math〉$ is used to typeset 〈math〉 as an in-
line mathematical expression.

• Between symbols in series:

– 1,~2, or~3.

• When a symbol is a tightly bound object of a preposition:

– from 0 to~1,
– increase z by~1,
– ….

• When mathematical phrases are rendered in words:

– equals~n,
– less than~ϵ,
– modulo~2,
– for large~n,
– ….

• When cases are being enumerated within a paragraph:

– (b)~Show that function $f(x)$ is (1)~continuous;
(2)~bounded.

2.1.2 Grouping
Grouping is another common technique in TEX and LATEX. �e le� brace
token ({) starts a group. �e right brace token (}) closes it. Grouping has
two purposes: �e �rst purpose of grouping is that it turns a number of
things into one compound thing. �is may be needed, for example, if you
want to pass several words as the single argument to a command which
typesets its sole argument in bold face text. �e following demonstrates
the point.
A bold \textbf{word} and
a bold \textbf letter.

A bold word and a bold letter.

�e second purpose of grouping is that it lets you change certain
settings and keep the changes local to the group. �e following demon-
strates how this may be used to make a local change to how the text is
typeset inside the group.
Normal text here.
{% Start a group.
\bfseries
% Now we have bold text.
Bold paragraphs in here.

}% Close the group.
Back to normal text again.

Normal text here. Bold para-
graphs in here. Back to normal
text again.

42 Chapter 2

Common diacritics.
Table 2.2 Output Command Name

ò \‘{o} Acute accent
ó \’{o} Grave accent
ô \ˆ{o} Circum�ex (hat)
õ \˜{o} Tilde (squiggle)
ö \"{o} Umlaut or dieresis
ċ \.{c} Dot accent
š \v{s} Háček (caron or check)
ŏ \u{o} Breve accent
ō \={o} Macron (bar)
ő \H{o} Long Hungarian umlaut
�oo \t{oo} Tie-a�er accent

ş \c{s} Cedilla accent
o. \d{o} Dot-under accent
o
¯

\b{o} Bar-under accent

Inside the group you may have several paragraphs. �e advantage of
the declaration \bfseries is that it lets you de�ne how the text is typeset
for the remainder of the group, which may have several paragraphs.
�is is an advantage to the \textbf command, which does not allow
paragraph-breaks in its argument.

�ere is also a low-level TEX operator pair for creating groups. It
works just as the braces. A group is started with \begingroup and ended
with \endgroup. �ese tokens may be freely mixed with braces but {/}
pairs and \begingroup/\endgroup pairs should be properly matched. So
‘{ \begingroup \endgroup }’ is allowed but ‘{ \begingroup } \end-
group’ is not. Also it should be noticed that a brace group a�ects whites-
pace when you’re typesetting mathematics. �is does not hold for \beg-
ingroup/\endgroup.

2.2 Diacritics

�is section studies how typeset commonly occurring characters in com-
bination with diacritics, which are also known as accents. Table 2.2 dis-
plays some commonly occurring containing diacritics and the commands
which typeset them in LATEX. �e presentation is based on [Knuth, 1990,
Chapter 9].

Using \"{i} to typeset ï may not work if you’re not using a Type 1
font (T1 font). However, typesetting ï with ‘\"{\i}’ should always work.
Here the command \i is used to typeset a dotless i (ı). �ere is also a
command \j for a dotless j.

Table 2.3 displays some other commonly occurring special characters.

Running Text 43

Other special characters.
Table 2.3 Output Command Name

å \aa Scandinavian a-with-circle
Å \AA Scandinavian A-with-circle
ł \l Polish suppressed-l
Ł \L Polish suppressed-L
ø \o Scandinavian o-with-slash
Ø \O Scandinavian O-with-slash
¿ ?‘ Open question mark
¡ !‘ Open exclamation mark

Foreign ligatures.
Table 2.4 Output Command Name

œ \oe French ligature œ
Œ \OE French ligature Œ
æ \ae Latin and Scandinavian ligature æ
Æ \AE Latin and Scandinavian ligature Æ
ß \ss German ‘Eszett’ or sharp S

2.3 Ligatures
A ligature is a combination of two or several characters as a special glyph.
Examples of English ligatures and the character combinations which they
represent are � (fi), � (ff), � (ffi), � (fl), and and � (ffl). LATEX recognises
English ligatures and substitutes them for the character representing
them.

Table 2.4 displays some foreign ligatures. �e LATEX command which
is required to typeset the symbol ß suggests that the es-zet is a ligature of
‘ss’. Indeed, this is how it is used. However, historically the symbol is a
ligature of a long ‘s’ (ſ) and a ‘z’. Looking at the shape of the ligature, this
sort of makes sense.

Sometimes it is better to suppress ligatures. �e following is an
example: it prevents LATEX from turning the ‘ff ’ in ‘shelfful’ into a ligature,
which makes the result much easier to parse.
He bought a shelf{}ful of books. LATEX Usage

If you use xelatex then the previous trick may not work but the
following should.
He bought a shelf\hbox{}ful of books. LATEX Usage

2.4 Quotation Marks
�is section explains how you typeset quotation marks. Figure 2.1
presents an example which is based on [Lamport, 1994, Page 13]. �e
word ‘Convention’ in this example is in single quotes and the word ‘this’
is in double quotes. �e quotes at the start are backquotes (‘ and “). �e

44 Chapter 2

Quotes.
Figure 2.1

‘Convention’ dictates that
punctuation go inside
quotes, like “this,” but
some think it’s better
to do “this”.

‘Convention’ dictates that
punctuation go inside
quotes, like “this,” but
some think it’s better to do
“this”.

Nested quotations.
Figure 2.2

“\,‘Fi’ or ‘fum?’\,” he asked.\\
“‘Fi’ or ‘fum?”’ he asked. \\
“{}‘Fi’ or ‘fum?’{}” he asked.

“ ‘Fi’ or ‘fum?’ ” he asked.
“‘Fi’ or ‘fum?”’ he asked.
“‘Fi’ or ‘fum?’” he asked.

quotes at the end are the usual quotes (’ and ”). Notice that the quote
between ‘it’ and ‘s’ is produced using a single quote in LATEX.

To get properly nested quotations you insert a thin space where
quotes “meet”. You get a thin space with the command ‘\,’. Figure 2.2 pro-
vides a concrete example which is taken from [Lamport, 1994, Page 14].
Figure 2.2 provides another example. �e �rst line of this example looks
much better than the other two. Note that LATEX parses three consec-
utive quotes as a pair of quotes followed by one more quote. �is is
demonstrated by the second line of the output, which looks terrible.
�e last line of the input avoids the three consecutive quotes by adding
an empty group which makes explicit where the double quotes and the
single quote meet. Still the resulting output doesn’t look great.

Intermezzo. As a general rule, British usage prefers the use of single quotes
for ordinary use. �is poses a problem with the single quote which is used
for the possessive form: He said ‘It is John’s book.’. �is is why it is also
acceptable to use double quotes [Trask, 1997, Chapter 8].

2.5 Dashes
�ere are three kinds of dashes: ‘-’, ‘–’, and ‘—’. In LATEX you get them
with ‘-’, ‘--’, and ‘---’. �e second symbol can also be typeset with the
command \textendash and the last symbol with the command \tex-
temdash. �e symbol ‘−’, which is used in mathematical expressions
such as ‘a− b ’, is not a dash. �is symbol is discussed in Chapter 8. �e
following brie�y explains how the dashes are used.

- �is is the intra-word dash which is used to hyphenate compound
modi�ers such as one-to-one, light-green, and so on [Trask, 1997,
Chapter 6]. In LATEX you typeset this symbol as follows: ‘-’.

– �is is the en-dash, which roughly has a width of the letter N. It is
mainly used in ranges: pages 12–15 (from 12 to 15). However,
Allan [2001, page 45] notes that the en-dash is also used to link
two names which are sharing something in common: a joint An-
glo–French venture. �e LATEX command \textendash and the
sequence ‘--’ typeset the en-dash.

Running Text 45

Dashes
Figure 2.3 The intra-word dash is used to hyphenate

compound modifiers such as light-green,
X-ray, or one-to-one. …

The en-dash is used in ranges: pages˜12--15.
The em-dash is used to separate strong
interruptions from the rest of the
sentence˜---˜like this%
˜\cite[Chapter˜6]{Trask:1997}. …

— �is is the em-dash, which roughly has the same width as the letter M.
It is used to separate strong interruptions from the rest of the sen-
tence — like this [Trask, 1997, Chapter 6]. �e LATEX command
\textemdash and the sequence ‘---’ typeset the em-dash.

Figure 2.3 presents an example. A few yeasr ago I noticed that sometimes
‘---’ doesn’t work in xelatex (even with ‘Mapping = tex-text’ enabled).
However, \textemdash still works.

2.6 Periods
LATEX usually treats a period (.) as an end-of-sentence indicator. By
default, LATEX inserts a bit more space a�er the period at the end of a
sentence than it does between words. Inserting the \frenchspacing
turns this feature o�. When a period is not the end of a sencence you
need to help LATEX a bit by inserting the space command (\) a�er the
period.
Mr.\˜Happy has a compiler compiler named after him.LATEX Usage

However, when an uppercase letter is followed by a period, then
LATEX assumes the period is being used for abbreviation. For example:
Donald E. Knuth developed the {\TeX} system. LATEX Usage

�is convention causes a problem when an uppercase letter really is
the end of a sentence. You insert the \@ command before the period if
this happens.
In Frank Herbert’s Dune saga,
the Mother School of the Bene Gesserit
is situated on the planet Wallach IX\@.

LATEX Usage

2.7 Emphasis
Emphasis is an typograpic tool which typesets text in a di�erent font
from the rest of the text. �e idea is that this makes the text stand out,
thereby emphasising the text. Emphasis is especially useful to introduce
new concepts, such as the �rst word in this paragraph.

In some documents, emphasis is implemented by typesetting text
in a bold face font, by typesetting it in upper case font, or (worse) by

46 Chapter 2

Using footnotes.
Figure 2.4 Footnotes\footnote{A footnote is a note

of reference, explanation, or comment which is
usually placed below the text on a printed page.}
can be a nuisance. This is especially true if
there are many.\footnote{Like here.} The more
you see them, the more annoying they get.%
\footnote{Got it?}

Footnotesa can be a nuisance. �is is especially true if there are many.b
�e more you see them, the more annoying they get.c

aA footnote is a note of reference, explanation, or comment which is usually
placed below the text on a printed page.

bLike here.
cGot it?

underlining the text. In LATEX-produced documents, emphasised in-line
text is usually slanted (italicised). Trask [1997, Page 82] states that this
is the preferred style for emphasis.

In LATEX emphasis is implemented with the command \emph. em-
phasised in-line text �e best way to regard the command \emph is as an
emphasis switch, which switches from upright to slanted and back. �e
semantics of the declaration depend on how many times it is active.

• If, at the current position, the number of active applications is
even — this includes zero — then the current style is upright, and
the next application switches to a slanted style.

• Otherwise, the current style is slanted, and the next application
switches to upright.

\emph{An
\emph{example
\emph{with}

nested
\emph{emphasis}}}.

An example with nested emphasis.

2.8 Footnotes and Marginal Notes
It is generally accepted that footnotes and marginal notes should be used In texts with

narrow
margins it is
better to
avoid
marginal
notes.

sparingly because they are disruptive. However, proper use of marginal
notes in documents with wide margins can be very e�ective.

Not surprisingly, LATEX provides a command for footnotes and a
command for marginal notes. Figure 2.4 demonstrates how to specify
footnotes in LATEX. A marginal note or marginal pargagraph is like a foot-
note, but then in the margin as on this page. �e command ‘\marginpar
{〈text〉}’ puts 〈text〉 in the margin as a marginal note. By passing an
optional argument to the command you can put di�erent text on odd
(recto/front/righ-hand) pages and on even (verso/back/le�-hand) pages.
�e optional argument is used for even pages and the required argument

Running Text 47

�e quote environment.
Figure 2.5 Blah blah blah blah blah blah blah blah blah blah blah.

\begin{quote}
Next to the originator of a good sentence
is the first quoter of it. \\

\emph{Ralph Waldo Emerson}
\end{quote}
Blah blah blah blah blah blah blah blah blah blah blah.

Blah blah blah blah blah blah blah blah blah blah blah.

Next to the originator of a good sentence is the �rst quoter
of it.
Ralph Waldo Emerson

Blah blah blah blah blah blah blah blah blah blah blah.

is used for odd pages. If you’re using both the optional and required
argument then it is easy to remember which is which: the optional argu-
ment is to the le� of the required argument so it’s for the le�-hand page;
the required argument is for the right-hand page. Note that marginal
notes may look better with ragged text.

2.9 Displayed Quotations and Verses

�e quote and quotation environments are for typesetting displayed
quotations. �e former is for short quotations; the latter is for longer
quotations. Figure 2.5 shows how you use the quote environment. �e
command‘ \\’, which is used in Figure 2.5, forces a line break.

�e verse environment typesets poetry and verse. Figure 2.6 shows
how you use the environment. In this example, the command \qquad
inserts two quads. Here a quad is an amount of space which is equivalent
to the size of the current font. So if you’re using a 12 pt font then a quad
results in a 12 pt space. �is space is about the same as the width of the
letter ‘M’. As with the quote environment, the verse environment also
required that line breaks are speci�ed explicitly with the command ‘\\’.

2.10 Line Breaks

In the previous section the \\ inserted a line break in displayed quo-
tations and verses. �e command also works inside paragraphs. �e
command takes an optional argument which determines the extra verti-
cal space of the line break: \\[〈extra vertical space〉]. A line break
at the end of a page may trigger page break. If page breaks aren’t desirable
you should use the command ‘*’, which works similar to \\, except
that it inhibits page breaks.

48 Chapter 2

�e verse environment.
Figure 2.6 The following anti-limerick is

attributed to W.˜S. Gilbert.
\begin{verse}

There was an old man of St.˜Bees, \\
Who was stung in the arm by a wasp; \\

\qquad When they asked, ”Does it hurt?” \\
\qquad He replied, ”No, it does n’t, \\

But I thought all the while ’t was a Hornet.”
\end{verse}

�e following anti-limerick is attributed to W. S. Gilbert.

�ere was an old man of St. Bees,
Who was stung in the arm by a wasp;

When they asked, ”Does it hurt?”
He replied, ”No, it does n’t,

But I thought all the while ’t was a hornet.”

Size-a�ecting declarations
and environments.

Table 2.5 Declaration Environment Example

\tiny tiny Example

\scriptsize scriptsize Example

\footnotesize footnotesize Example
\small small Example
\normalsize normalsize Example
\large large Example
\Large Large Example
\LARGE LARGE Example
\huge huge Example
\Huge Huge Example

2.11 Controlling the Size

With the proper class and packages there usually is no need to change
the type size of your text. However, sometimes it has its merits, e.g.,
when you’re designing your own titlepage or environment. Table 2.5
lists the declarations and environment which let you to change the type
size. �e preferred “size” for long-ish algorithms and program listings
is \scriptsize. If you’re using a package to typeset your listings, the
package usually chooses the right size for you. If not, it probably lets you
specify the type size. Figure 2.7 shows how you change the size of text.

Running Text 49

Controlling the size.
Figure 2.7 {\tiny Mumble. \\

\begin{normalsize}
What?

\end{normalsize} \\
\begin{Huge}

I said ‘Mumble’.
\end{Huge} }

Mumble.

What?
I said ‘Mumble’.

Type style a�ecting declara-
tions and commands. �e
main font which is used to
typeset the text in the last
column is Computer Modern,
which is what most LATEX
users are used to. �e four
lines at the top of the table
usually correspond to the de-
fault style. �e �rst nine
type faces have proportional
widths, which means that dif-
ferent glyphs may have di�erent widths. Typical examples of glyphs with di�erent widths are the upper case ‘M’
and the lower case ‘i’. In the typeface on the last line, each character has the same width. �ese fonts/typefaces
are called non proportional or monospaced. �ey are very useful for typesetting program listings.

Table 2.6 Declaration Command Example

\mdseries \textmd Medium Series
\normalfont \textnormal Normal Style
\rmfamily \textrm Roman family
\upshape \textup Upright Shape
\itshape \textit Italic Shape
\slshape \textsl Slanted Shape
\bfseries \textbf Boldface Series
\scshape \textsc Small Caps Shape
\sffamily \textsf Sans Serif Family
\ttfamily \texttt Typewriter Family

2.12 Controlling the Type Style
Whereas changing the type size is hardly ever needed, changing the type
style is required more o�en. �ere are ten LATEX declarations which a�ect
the type style. For each declaration there is a corresponding command
which takes an argument and applies the type style of the declaration to
the argument. �e declarations and commands are listed inTable 2.6.

Intermezzo. If you do need to change the type style of your text then it
is probably for a speci�c purpose. For example, changing the type style of
an identi�er in an algorithm, changing the type style of a constant in an
algorithm, and so on. Rather than hard-coding the style when you typeset
your text, it is better to (1) de�ne a user-de�ned command that typesets your
text in the required style, and (2) use the command to typeset your text. �e
advantage of doing things this way is that it improves maintainability. For
example, if you want to change the type style of all identi�ers in your text
then you only need to make changes in the de�nition of the command that
typesets identi�ers. De�ning your own commands is discussed in Chapter 10.

2.13 Phantom Text
�is section is devoted to commands which don’t typeset anything but
which do a�ect the horizontal and vertical spacing.

50 Chapter 2

�e \phantom command.
Figure 2.8 Fill in the missing word.\\

Fill in the missing
.

Fill in the missing word.
Fill in the missing .

�is command “typesets” its argument using invisible ink. �e dimen-

sions of the box are the same as the dimensions required for typesetting
〈stuff〉. “�e font” which is used to typeset the invisible text is the same
as the current font.

Figure 2.8 demonstrates how you use the command.
�e \hphantom and \vphantom commands are horizontal and vertical

versions of the \phantom command. �e following explains how they
work.

\hphantom{〈stuff〉}
�is is the horizontal version of the \phantom command. �e com-

mand creates a box with zero height and the same width as its argument,
〈stuff〉.

\vphantom{〈stuff〉}
�is is the vertical version of the \phantom command. �e command cre-
ates a box with zero width and the same height as its argument, 〈stuff〉.
It is especially useful for getting the right size for delimiters such as
parentheses in mathematical formulae that span multiple lines. �is is
explained in more detail in Section 8.8.1.

2.14 Alignment
�is section studies three commands and two environments which change
the text alignment. �e �rst command centres text. �e second and
third command align text to the le� and to the right. �e �rst of the
environments is the tabular environment, which typesets row-based
content with vertical alignment. �e last environment is the tabbing
environment. �is environment lets you de�ne vertical alignment (tab)
positions and lets you position horizontal text relative to these alignment
positions.

2.14.1 Centred Text
Centering text is done with the center environment. �e following
example is inspired by Iggy Pop.
\begin{center}

Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{center}

Blah.
Blah blah blah.

Blah blah blah blah blah blah
blah blah blah blah blah blah blah

blah blah.

Running Text 51

2.14.2 Flushed/Ragged Text
�e flushleft environment and the \raggedright declaration typeset
text which is aligned to the le�. Likewise, the flushright environment
and \raggedleft declaration typeset text which is aligned to the right.
�e following shows the e�ect of the flushleft environment.
\begin{flushleft}

Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{flushleft}

Blah.
Blah blah blah.
Blah blah blah blah blah blah
blah blah blah blah blah blah blah
blah blah blah blah blah blah.

2.14.3 Basic tabular Constructs
�e tabular environment typesets text with rows and columns with
vertical alignment. �e environment also has siblings called tabular*
and array. �e tabular* environment works similar to tabular but it
takes an additional argument which determines the width of the resulting
construct. �is environment is explained in Section 2.14.5. �e array
environment can only be used in math mode. It is explained in Chapter 8.
�e tabular and tabular* environments can be used in text and math
mode.

�e remainder of this section is an introduction to the tabular
environment. �is introduction should more than likely su�ce for day-
to-day usage. A more detailed presentation is provided in Section 2.14.5.

In its simplest form the tabular environment is used as follows.
\begin{tabular}[〈global alignment〉]

{〈column alignment〉}
〈text〉 & 〈text〉 & … & 〈text〉 \\
…
〈text〉 & 〈text〉 & … & 〈text〉 \\
〈text〉 & 〈text〉 & … & 〈text〉

\end{tabular}

LATEX Usage

�e body of the environment contains a sequence of rows which
are delimited by linebreaks (\\). Each row is a sequence of alignments
tab-delimited 〈text〉. �e i -th 〈text〉 in a row corresponds to the i -th
column. �e following explains the arguments of the environment:

〈global alignment〉
�is optional argument determines the vertical alignment of the en-

vironment. Allowed values are ‘t’ (align on the top row), ‘c’ (align on
the centre), or ‘b’ (align on the bottom row). �is default value of this
argument is ‘c’.

〈column alignment〉
�is argument determines the alignment of the columns and additional

52 Chapter 2

decorations. For day-to-day usage, the following options are relevant.

l �is option corresponds to a column. �e column is le�-aligned.

r �is also corresponds to a column. �e column is right-aligned.

c �is also corresponds to a column. �e column is centred.

p{〈width〉} �is option corresponds to a top-aligned 〈width〉-wide col-
umn which is typeset as a paragraph in the “usual” way. Some
commands such as \\ are not allowed at the top level. See [Lam-
port, 1994, Appendix C.10.2] for further information.

| �is options does not correspond to an actual column but results in
additional decoration. It results in a vertical line which is drawn
at at the “current” position. For example, if 〈column alignment〉
is ‘l|cr’ then there will be a vertical line separating the �rst two
columns. Using this option is discouraged because vertical lines
are usually distractive.

�e tabular environment also de�nes commands which may be
used inside the environment.

\hline
�is command inserts a horizontal rule. �e command may only be

used at the start of a row.
\cline{〈number〉1}{〈number〉2}

�is draws a horizontal line from the start of column 〈number〉1 to the
end of column 〈number〉2.

\vline
�is command results in a vertical line. �e command may only be

used if the column is aligned to the le�, to the right, or to the centre. In
addition, it may be used in a so-called @-expression, which is explained
in the next section.

Figure 2.9 presents a simple example of the tabular environment.
�e example exhibits all possible alignments as well as the paragraph
“alignment” feature. Note that line breaks are inserted inside the ‘p’
column. �is is never done if a column is aligned with ‘l’, ‘r’, and ‘c’.

Intermezzo. �e column alignment option ‘|’ and the commands \hline,
\cline, and \vline are irrisistable to new users. I suspect this is because
most tabular examples involve the option and these commands. It is under-
standable that new users want to repeat this, especially if they’re not aware
that using the option and the commands in moderation is better because
the resulting grid lines are dazzling and distractive. Chapter 6 provides
some guidelines on how to design good tables.

Regular m× n tables with the same alignment in the same column
are rare. �e following command lets you join columns within a row and
override the default alignment.

Running Text 53

Using the tabular environ-
ment.

Figure 2.9 \begin{tabular}{l|crp{3.1cm}}
\hline

1 & 2 & 3
& Box me in, but witho%

ut those awkward line
breaks, please.

\\\hline
11 & 12 & 13

& Excellent.
\\ 111 & 112 & 113

& Thank you!
\\\hline
\end{tabular}

1 2 3 Box me in, but with-
out those awkward
line breaks, please.

11 12 13 Excellent.
111 112 113 �ank you!

\multicolumn{〈number〉}{〈column alignment〉}{〈text〉}
�is inserts 〈text〉 into a single column which is formed by combining
the next 〈number〉 columns in the current row. �e alignment of the
resulting column is determined by 〈column alignment〉. �is command
is especially useful to override the default alignment in column headings
of a table. An example involving the command is presented in the next
section.

2.14.4 �e booktabs Package

�e booktabs package adds some extra functionality to the tabular
environment. �e package discourages vertical grid lines. Using the
booktabs package results in better looking tables.

• �e package provides di�erent commands for di�erent rules.
• �e package provides di�erent rules which may have di�erent

widths.
• �e package provides commands for temporarily/permanently

changing width.
• �e package has a command which adds extra line space.
• �e package is compatible-ish with the colortbl package which

is used to specify coloured tables.

�e booktabs package provides the following commands for rules.
�e �rst four commmands take an optional argument specifying the
width of the rule.

\toprule[〈width〉]
�is typesets the full horizontal rule at the top the table.

\bottomrule[〈width〉]
�is typesets the full horizontal rule at the bottom of the table.

\midrule[〈width〉]
�is typesets the remaining full horizontal rules in the table.

54 Chapter 2

Using booktabs rules.
Figure 2.10 \begin{tabular}[c]{lr@{ }lr@{.}lp{47mm}}

\toprule \multicolumn{1}{l}{\textbf{Destination}}
& \multicolumn{1}{l}{\textbf{Duration}}
& \multicolumn{2}{l}{\textbf{Price}}
& \multicolumn{1}{l}{\textbf{Description}}

\\\midrule
Cork City
& 7 & Days & \euro 300 & 00
& Visit Langer Laand. Price includes visits

to Rory Gallagher Place and de Maarkit.
\\ Ballinspittle

& 8 & Days & \euro 400 & 00
& Price includes visit to statue of

the Blessed Virgin Mary. See it move!
\\\bottomrule
\end{tabular}

�is table demonstrates the
rules provided by the book-
tabs package. �e input
for this table is listed in Fig-
ure 2.10. Clearly, booktabs
rules.

Table 2.7 Destination Duration Price Description

Cork City 7 Days €300.00 Visit Langer Laand. Price in-
cludes visits to Rory Gallagher
Place and de Maarkit.

Ballinspittle 8 Days €400.00 Price includes visit to statue of
the Blessed Virgin Mary. See
it move!

\cmidrule[〈width〉]{〈number〉1-〈number〉2}
�is typesets partial horizontal rules in the middle of the table. �e rule
ranges from the start of column 〈number〉1 the end of column 〈number〉2.

\addlinespace[〈width〉]
�is command is usually used immediately a�er a line break and (guess)
it gives you more vertical line space.

Figure 2.10 demonstrates how to use the booktabs-provided rule
commands. �e resulting output is presented in Table 2.7. Notice that
the inter-linespacing is much better than the output in Figure 2.9. Also
notice the di�erent widths of the rules.

2.14.5 Advanced tabular Constructs
Using basic tabular constructs usually su�ces for day-to-day typesetting.
�is section explains the techniques which give you the power to typeset
more advanced tabular constructs.

�e following starts by presenting two addition column options.
�is is followed by some style parameters which control the default size
and spacing of the tabular, tabular*, and array environments. �e
column options are as follows.

Running Text 55

Controlling column widths
with an @-expression. �e out-
put is stretched out for clarity.

Figure 2.11 \begin{tabular*}{3cm}{@{}lcr@{}}
\toprule M & M & M \\\bottomrule

\end{tabular*}
\begin{tabular*}{3cm}

{@{\extracolsep{\fill}}%
lcr%
@{\hspace{0pt}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}
\begin{tabular*}{3cm}

{@{\hspace{\tabcolsep}}%
@{\extracolsep{\fill}}%
lcr%
@{\hspace{\tabcolsep}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}

M M M M M M M M M

*{〈number〉}{〈column options〉}
�is inserts 〈number〉 copies of 〈column options〉. For example, ‘*{2}{
lr}’ is equivalent to ‘lrlr’.

@{〈text〉}
�is is called an @-expression. It inserts 〈text〉 at the current position.

�is may be useful if you want to add certain text or symbols at the given
position. For example ‘@{.}’ inserts a period at the current position.

LATEX normally inserts some horizontal space before the �rst column
and a�er the last column. It inserts twice that amount of space between
adjacent columns. However, this space is suppressed if an @-expression
precedes or follows a column option. For example, if 〈column align-
ment〉 is equal to ‘@{}ll@{}l@{}’ then this suppresses the horizontal
space before the �rst column, a�er the last column, and between the
second and last column. �e length \tabcolsep controls the extra hor-
zonalt space which is inserted. �e value of the command is half the
width which is inserted between columns.

A horizontal spacing command in an @-expression controls the sepa-
ration of two adjacent columns. For example, ‘@{\hspace{〈width〉}}’
inserts a horizontal 〈width〉-wide space.

Finally, @-expressions may also adjust the default column separation.
Using \extracolsep{〈width〉} adds additional horizontal 〈width〉-wide
space between subsequent columns. However, additional width is never
inserted before the �rst column. Using \extracolsep{\fill} inserts
the maximum possible amount of horizontal space. �is is useful if you
want to extend the width to the maximum possible width.

Figure 2.11 demonstrates an application of an @-expression the the
maximal stretching of columns in a tabular* environment.

56 Chapter 2

�e following commands control the default appearance of tabular,
tabular*, and array environments.

\arraycolsep
�e value of this length command is equal to half the default horizontal
distance between adjacent columns in the array environment. �is
amount of space is also equal to the default horizontal space which is
inserted before the �rst column and a�er the last column.

\tabcolsep
�e value of this length command is equal to half the default horizontal
distance between adjacent columns in the tabular and tabular* envi-
ronments. Again, this is equal to the default horizontal space which is
inserted before the �rst column and a�er the last column.

\arrayrulewidth
�e value of this length command is the width of the lines resulting

from a ‘|’ in the 〈column options〉 argument and the lines resulting
from the commands \cline, \hline, and \vline.

\doublerulesep
�e value of this length command is the distance between two adjacent
lines resulting from a ‘||’ in the 〈column options〉 argument or two
adjacent lines resulting from the \hline command.

\arraystretch
�is command determines the distance between successive rows. It

defaults to 1 and “multiplying” it by x results in rows which are x times
further appart. So, by rede�ning this command to 0.50 you halve the
distance between successive rows. Rede�ning commands is explained in
Chapter 10.

2.14.6 �e tabbing Environment
�e tabbing environment is useful for vertical alignment relative to user-
de�nable alignment positions. �e remainder of this section describes
some basic usage of the environment. �e reader is referred to [Lamport,
1994, pages 201–203] for more detailed information.

�e tabbing environment can only be used in paragraph mode (the
“usual mode”). It produces lines of text with alignment in columns based
upon tab positions.

\=
De�nes the next tab (vertical alignment) position.

\\
Inserts line break and resets next tab position to left_margin_tab.

\kill
�rows away the current line but remembers the tab positions de�ned

with \=.
\+

Increments left_margin_tab.
\-

Decrements left_margin_tab.

Running Text 57

�e tabbing environment.
Figure 2.12 \begin{tabbing}

From \=here to \=there \\
\>and \>then\\
\>\>all\\
\>the \>way\\

back \>to \>here.
\end{tabbing}

From here to there
and then

all
the way

back to here.

Advanced use of tabbing en-
vironment.

Figure 2.13 \begin{tt}\begin{tabbing}
AAA\=AAA\=AAA\=AAA \kill
FUNC euc(INT a,

INT b) : INT \\
BEGIN \+ \\

WHILE (b != 0) DO \\
BEGIN \+ \\

INT rem = a MOD b;\\
a = b; \\
b = rem; \- \\

END \\
RETURN a; \- \\

END;
\end{tabbing}\end{tt}

FUNC euc(INT a, INT b) : INT
BEGIN

WHILE (b != 0) DO
BEGIN

INT rem = a MOD b;
a = b;
b = rem;

END
RETURN a;

END;

\>
Move to the next tab stop.

Figures 2.12 and 2.13 present two examples of the tabbing environ-
ment. �e examples do not demonstrate the full functionality of the
environment.

2.15 Language Related Issues
As suggested by its title, this section is concerned with language related
issues. �e remaining three sections deal with hyphenation, foreign
languages, and spelling.

2.15.1 Hyphenation
LATEX’s (TEX’s really) automatic hyphenation is second to none. However,
sometimes even TEX gets it wrong. �ere are two ways to overcome such
problems.

• �e command \- in a word tells LATEX that it may hyphenate the
word at that position.
Er\-go\-no\-mic has
three hyphenation positions.

LATEX Usage

• Specifying the same hyphenation patterns is messy and prone
to errors. Using the \hyphenation command is a much cleaner

58 Chapter 2

Using the babel package.
Figure 2.14 \usepackage[dutch,british]{babel}

...

\selectlanguage{dutch}
% Dutch text here.
Nederlandse tekst hier.

\selectlanguage{british}
% Engelse tekst hier.
English text here.

solution. �is command takes one argument, which should be
a comma-separated list of words. For each word you can put a
hyphen at the (only) possible/desired/allowed hyphenation posi-
tions. You may use the command several times. �e following is
an example.
\hyphenation{fortran,er-go-no-mic} LATEX Usage

2.15.2 Foreign Languages
�e babel package supports multi-lingual documents. �e package
supports proper hyphenation, switches between di�erent languages in
one single document, de�nition of foreign languages, commands which
recognise the “current” language, and so on. Figure 2.14 provides a
minimal example. Rik Kabel kindly informed me that xelatex users
use the polyglossia package instead of babel. One of the advantages of
the polyglossia package is that it automatically loads the bidi package
when bi-directional scripts are used.

2.15.3 Spell-Checking
LATEX does not support automatic spell-checking. Note that spell-checking
is not exactly non-trivial because text may be generated. In addition text
may come from external �les: spell-check your bibliography �les too. �e
vim program has a spell-checker plugin which is called SpellChecker.
�e ispell program supports LATEX. �e ‘-t’ �ag tells the command
that the input is LATEX.
$ ispell -l -t -S input.tex | sort -u Unix Session

Chapter 3
Lists

This chapter is about lists. Here, a list is a sequence of labelled items.
LATEX has three built in environments supporting unordered lists, ordered
lists, and description lists.

LATEX marks each item in the output list by giving it a label which
precedes the item. �e items are typeset in paragraphs with hanging
indentation, which means the paragraphs are indented a bit further than
the surrounding text.

In unordered lists, the order of the items is irrelevant-ish and all labels
are the same. Usually the labels are bullet points, asterisks, dashes, ….
Most people refer to such lists as bullet points.

In an ordered list the order of the items does matter. Each label
indicates the order of its item in the list. You could say that the items are
numbered by the labels. Usually, the labels are arabic numbers (1, 2, 3,
…), lower case roman numerals (i, ii, iii, …), lower case letters (a, b, …, z),
and so on.

In description lists, the order of the items may or may not matter. In
such lists, each label is a (short) description of its item.

�e remainder of this chapter is as follows. Section 3.1 explains
unordered lists. Typesetting ordered (also enumerated) lists is studied
in Section 3.2. Section 3.3 describes the enumerate package, which
provides a high-level interface to control the labels which are used for
the lists. Section 3.4 shows how you typeset description lists. Section 3.5,
which is the icing on the cake, describes how to create your own lists.

3.1 Unordered Lists
�e itemize environment is for creating unordered lists. In the body
of the environment you start each item in the list using the \item com-
mand. Each itemize environment should have at least one \item. Nested
itemised lists are possible, but the nesting level is limited. Figure 3.1
shows how you use the itemize environment.

Each item in the list is preceded by its label. Usually, the shape of
the top-level label is a bullet point but the shape may depend on your
document class and your packages.

�e command \labelitemi determines the shape of the label of

59

60 Chapter 3

�e itemize environment.
Notice that the labels of the
nested list are di�erent from
the labels of the top-level list.

Figure 3.1 \begin{itemize}
\item First item.
\item Second item.

Text works as usual here.
\item Third item is a list.

Different labels here.
\begin{itemize}
\item First nested item.
\item Second item.
\end{itemize}

\end{itemize}

• First item.
• Second item. Text works as

usual here.
• �ird item is a list. Di�er-

ent labels here.

– First nested item.
– Second item.

Changing the item label. �e
default label for top-level
itemised lists is the bullet.
�e labels of the itemised top-
level list which is de�ned in
the group is a plus sign. �is
di�erent label is the result of
rede�ning the \labelitemi
command inside the group.
By rede�ning the command
inside the group the new
de�nition of the command is kept local to the group. �e original de�nition of the command is restored upon
leaving the group. �is explaines why the labels of the second itemised list are bullets.

Figure 3.2 {% Start a group.
\renewcommand{\labelitemi}

{+}
\begin{itemize}

\item Label is plus.
\end{itemize}

}% End of group.

\begin{itemize}
\item Default label.
\end{itemize}

+ Label is plus.

• Default label.

the top-level items. Likewise, \labelitemii is for labels of subitems,
\labelitemiii for the labels of subsubitems, and \labelitemiv for
the labels of subsubsubitems. By rede�ning these commands, you may
change the appearance of the labels. You may rede�ne an existing com-
mand with the \renewcommand command. �e following sets the shape
of the labels at the top level to a plus sign and the labels at level four to a
minus sign. �e command \renewcommand is discussed in more detail in
Chapter 10.

\renewcommand{\labelitemi}{+}
\renewcommand{\labelitemiv}{-}

LATEX Usage

If you only want to change the appearance of a given label for a
single list then the easiest way is to rede�ne the \labelitemi command
a group and put the list in that group. �is keeps the new de�nition of
\labelitemi local to the group.1 Remember that you may create a group
using braces. Figure 3.2 shows how to change the appearance of the label
at Level 1 and keep the change local to the group.

1See Section 2.1.2 for further information about the merits of groups.

Lists 61

�e enumerate environment.
Notice that the labels of the
top-level list are numeric, we-
hereas the labels of the nested
list are parenthesised lower-
case letters.

Figure 3.3 \begin{enumerate}
\item First item.
\item Second item.
\item Third item is a list.

\begin{enumerate}
\item First nested item.
\item Second item.
\end{enumerate}

\end{enumerate}

1. First item.
2. Second item.
3. �ird item is a list.

(a) First nested item.
(b) Second item.

3.2 Ordered Lists
�e enumerate environment is for creating ordered lists. It works just as
the itemize environment but this time the labels are numbers, letters, or
roman numerals, and the like. Figure 3.3 demonstrates the environment.

As with the appearance of the labels in the itemize environment you
may also change the appearance of the labels in the enumerate environ-
ment. �is time the appearance depends on the four labelling commands
\labelenumi, \labelenumii, \labelenumiii, and \labelenumiiv. Each
of these commands depends on a counter which counts the items at
its level. Counters are explained in further detail in Chapter 12. �e
top level items are counted using the counter enumi, the second level
items with enumii, the third level items with enumiii, and the fourth
level items with enumiv. �ese counters are managed by the labelling
commands. When a labelling command typesets its label, it uses the
corresponding counter and typesets the label in a certain style. �e style
is hard-coded in the command. Typical styles are (1) arabic numbers,
(2) lowercase or uppercase roman numerals, and (3) lowercase or upper-
case letters. Implementing the typesetting of the label in these styles is
done with the commands \arabic, \roman, \Roman, \alph, and \Alph,
which typeset their counter using arabic numbers, lower case roman
numerals, upper case roman numerals, lower case letters, and upper case
letters. �e following demonstrates how you get lower case roman nu-
merals for the labels at the top level and numbers for the labels at the
third level.
\renewcommand{\labelenumi}{\roman{enumi}}
\renewcommand{\labelenumiii}{\arabic{enumiii}}

LATEX Usage

3.3 �e enumerate Package
Having to rede�ne the labelling commands is tedious and prone to error.
�e enumerate package provides a high-level interface to LATEX’s default
mechanism for selecting the labels of enumerated lists. Basically, the
package rede�nes the enumerate environment. �e resulting environ-
ment has an optional argument which determines the style of the labels

62 Chapter 3

Using the enumerate pack-
age. �e enumerated list in
this example is created with
the environment enumerate,
which is rede�ned by the enu-
merate package. �e op-
tional argument of the en-
vironment de�nes labels of
the form ‘Item-〈upper case
letter〉’. Putting the text ‘Item’ inside the braces tells the enumerate environment that it should not interpret
the letters in the text as labels. Notice that the label is typeset relative to the start of the hanging paragraphs.
For short labels this is not a problem. However, with long labels, such as in this example, this results in the
label protruding into the margin of the surrounding text.

Figure 3.4 Surrounding text here.
\usepackage{enumerate}
\begin{enumerate}

[\textbf{{Item}-A}]
\item The first of two

hanging paragraphs.
\item The second of

hanging paragraphs.
\end{enumerate}

Surrounding text here.

Item-A �e �rst of two hanging
paragraphs.

Item-B �e second of two hanging
paragraphs.

Using the description envi-
ronment. �e environment
works almost the same as the
itemize and enumerate en-
vironments. �e only dif-
ference is that this time you
provide the labels for the list
as optional arguments of the
\item command.

Figure 3.5 Kurasawa films include:
\begin{description}
\item[Kagemusha]

When a powerful warlord
in medieval Japan dies,
a poor thief is recruited
to impersonate him. …

\item[Yojimbo]
A crafty ronin comes
to a town divided by
two criminal gangs. …

\item[Sanshiro Sugata]
A young man struggles to
learn the nuance and
meaning of judo. …

\end{description}

Kurasawa �lms include:

Kagemusha When a powerful
warlord in medieval Japan
dies, a poor thief is re-
cruited to impersonate him.
…

Yojimbo A cra�y ronin comes to
a town divided by two crim-
inal gangs. …

Sanshiro Sugata A young man,
struggles to learn the nu-
ance and meaning of judo.
…

of the lists. For example, using the option ‘A’ results in labels which are
typeset using the command ‘\Alph’. Likewise the options ‘a’, ‘I’, ‘i’, and ‘1’
result in labels which are typeset using the commands ‘\alph’, ‘\Roman’,
‘\roman’, and ‘\arabic’.

However, the package is more �exible and also allows you to specify
di�erent kinds of labels. Figure 3.4 provides an example. �e interested
reader is referred to the package documentation [D. Carlisle, 1999a] for
further details.

3.4 Description Lists

�e description environment is for creating labelled lists. �e labels
are passed as optional arguments to the \item command. Figure 3.5
provides an example of how to use the description environment.

Lists 63

Lengths which a�ect the for-
matting of a LATEX list envi-
ronment.

Figure 3.6 Preceding Text

\topsep + \parskip [+ \partopsep]

Item 1
Paragraph 1

Item 1
Paragraph 2

\parsep

Item 2
Label

\parsep + \itemsep

\topsep + \parskip [+ \partopsep]

Following Text

Label

\labelsep

\labelwidth

\itemindent

\listparindent

\leftmargin \rightmargin

3.5 Making your Own Lists
LATEX’s list environment lets you de�ne your own lists.

\begin{list}{〈label commands〉}{〈formatting commands〉} 〈item list〉 \end{list}
Here 〈label formatting commands〉 typesets the labels. For ordered
lists you may need to de�ne a dedicated counter that keeps track of the
numbers of the labels. How to do this is explained further on. �e 〈list
formatting commands〉 format the resulting list. �e formatting depends
on length commands. �ese commands determine lengths and widths
which are used to construct the resulting list. For example, the distance
between adjacent items, the distance between a label and its item, and
so on. Figure 3.6 depicts the relevant length commands and how they
determine the formatting of the list. �e picture is based on [Lamport,
1994, Figure 6.3]. �e horizontal length commands are rigid lengths. As
the name suggests the resulting dimensions are �xed. �e vertical length
commands are rubber lengths. �e resulting dimensions may shrink or
stretch depending on the lack or excess of vertical space on the page.

Figure 3.7 presents an example of a user-de�ned list. �e command
\newcounter{ListCounter} de�nes a new counter called ListCounter.
�e spell ‘List-\alph{ListCounter}’ typesets the label of each item as

64 Chapter 3

A user-de�ned list.
Figure 3.7 \newcounter{ListCounter}

\begin{list}
{List-\alph{ListCounter}}
{\usecounter{ListCounter}
\setlength{\rightmargin}{0cm}
\setlength{\leftmargin}{2cm}}

\item Hello.
\item World.
\end{list}

A user-de�ned environment
for lists. In this example, the
\newenvironment command
takes three arguments. �e
�rst is the name of the en-
vironment, the second argu-
ment determines what to do
upon entering the environ-
ment, and the third what to
do upon leaving the environ-
ment. �e second argument
opens a simple list environ-
ment and the third closes the
list environment.

Figure 3.8 \newcounter{ListCounter}
…
% Define new environment:
\newenvironment

{alphList}
{\begin{list}

{List-\alph{ListCounter}}
{\usecounter{ListCounter}
\setlength{\rightmargin}{0cm}
\setlength{\leftmargin}{2cm}}}

{\end{list}}
…
% Use new environment:
\begin{alphList}

\item Hello.
\item World.

\end{alphList}

‘List-’ followed by the current value of the counter as a lower case letter.
Inside the second argument of the list environment, the command
\usecounter{ListCounter} “uses” the counter, which basically adjusts
the value of the counter for the next \item.

As part of LATEX’s default mechanism all changes to counters and
lengths inside an environment are local. �is ensures that the counter
ListCounter is reset to its original value upon leaving the environment.

Using the list environment over and over with the same arguments
is not particularly useful and prone to errors. �e \newenvironment
command lets you de�ne a new environment with an easier hassle-free
interface. Figure 3.8 shows how you may implement the functionality of
the previous example as a user-de�ned environment.

�e �rst argument of \newenvironment is the name of the new envi-
ronment. �e second argument determines the commands which are
carried out at the start of the environment. �ese are the commands
which start the list environment. �e last argument determines the
commands which are carried out at the end on the environment. �ese

Lists 65

commands end the list environment. More information about \newen-
vironment may be found in Chapter 10.

66 Chapter 3

Part III

Pictures, Diagrams, Tables, and
Graphs

67

Chapter 4
Presenting External Pictures

This chapter is an introduction to presenting pictures which are
stored in external �les. Historically, this was an important mechanism
for importing pictures. Since pictures are usually included as numbered
�gures, this chapter also provides an introduction to the figure environ-
ment and, more generally, �oating environments.

�e remainder of this chapter, is mainly based on [D. P. Carlisle,
2003; Carlisle and Ratz, 1999; Reckdahl, 2006; Lamport, 1994]. It starts
by introducing the figure environment and continues by explaining
how to include external pictures. �is chapter is included mainly for
completeness as Chapter 5 is an introduction to specifying pictures and
diagrams with the tikz package, which is built on top of the pgf package.
Furthermore, Chapter 7 shows how to present graphs using the pgfplots
package, which is also built on top of pgf. Readers not using external
graphics are advised to only read the following two section and skip the
remainder of this chapter.

4.1 �e figure Environment
�e figure environment is usually used to present pictures, diagrams,
and graphs. �e environment creates a �oating environment. Floating en-
vironments don’t allow pagebreaks and they may “�oat” to a convenient
location in the output document [Lamport, 1994]. �is mechanism
gives LATEX more freedom to choose better page breaks for the remain-
ing text. For example, if there’s not enough room le� for a �gure at the
“current” position then LATEX may �ll up the remainder of the page with
more paragraphs and put the �gure on the next page. In this example
the �gure doesn’t end up exactly where you indended it but the result is
an aesthetically more pleasing document. However, it should be noted
that you can also force the typesetting of a �oating environment at the
“current” position in the output �le.

�e body of a figure environment is typeset in a numbered �gure.
�e \caption command may be used to de�ne a caption of the �gure.

LATEX gives some control over the placement of �oating �gures, of
�oating tables, and other �oats. For �gures the placement is controlled
with an optional argument of the figure environment. �e same mecha-

69

70 Chapter 4

nism is used for the table environment, which is explained in Chapter 6.
�e optional argument which controls the placement may contain any
combination of the letters ’t’, ’b’, ’p’, ’h’, and ’H’, which are used as fol-
lows [Lamport, 1994, Page 197]:

t Put the �oat at the top of a page.

b Put the �oat at the bottom of a page.

p Put the �oat on a separate page with no text, but only �gures, tables,
and other �oats.

h Put the �oat approximately at the current position (here). (�is option
is not available for double-column �gures and �gures in two-
column format.)

H Put the �oat at the current position (Here). (�is option is not avail-
able for double-column �gures and �gures in two-column for-
mat.)

�e default value for the optional argument is ’tbp’. LATEX parses the
letters in the optional argument from le� to right and will put the �gure
at the position corresponding to the �rst letter for which it thinks the
position is “reasonable”. Good positions are the top of the page, the
bottom of the page, or a page with �oats only, as these positions do not
disrupt the running text too much.

Inside the figure environment the command \caption de�nes a
caption. �e caption takes a moving argument, so fragile commands
must be protected. Moving arguments and \protect are explained in
Section 10.2.3. �e regular argument de�nes the caption as it is printed
in the �gure and in the list of �gures. If the regular argument gets too
long then you may not want this text in the list of �gures. In that case,
you may add an optional argument, which is used to de�ne a short
alternative title for the list of �gures. Within the regular argument of the
\caption command, you may de�ne a label for the �gure with the \label
command. �is works as usual. �e starred version of the environment
(figure*) produces an unnumbered �gure, which is not listed in the list
of �gures.

�e following shows how to create a �gure. Inside the figure en-
vironment you can put LATEX statements to produce the actual �gure.
In this example the text ‘Comparison of algorithms.’ appears in the list
of tables and the text ‘Comparison. �e dashed line …’ is used for the
caption.
\begin{figure}[tbp]

〈Insert LATEX here to produce the figure.〉
\caption[Comparison of algorithms.]

{Comparison. The dashed line …
\label{fig:comparison}}

\end{figure}

LATEX Usage

Presenting External Pictures 71

Using the dpfloat package.
Figure 4.1 \begin{figure}[p]

% Left-side part of float(possibly with \caption).
\begin{leftfullpage}

〈Left part of float〉
\end{leftfullpage}
\end{figure}
% Right-side part of float(possibly with \caption).
\begin{figure}[p]
\begin{fullpage}

〈Right part of float〉
\end{fullpage}
\end{figure}

4.2 Special Packages
�is section presents some packages which overcome some of LATEX’s
limitations for �oating environments.

4.2.1 Floats
LATEX always forces the caption of �oating environments on the same
page as that of the environment �e dpfloat package lets you create
�oating environments on consecutive pages. �is may be useful, for ex-
ample, if your �oat is too large and you want the caption on the opposite
page. Figure 4.1 presents an example.

4.2.2 Legends
Some documents distinguish between captions and legends. For such
documents the caption of an environment consists of the name, the
number, and a short title of the environment. For example, ‘Figure 4.1:
Using the dpfloat package.’. �e legend is a longer explanation of what’s
in the environment. LATEX does not distinguish between captions and
legends. �e ccaption package overcomes this problem and provides a
\legend command for legends. �e package also provides support for
caption placement and “sub-�oats”.

4.3 External Picture Files
A common mechanism for creating pictures is including them from
external �les. �e best picture formats are vector graphics formats. �e
advantage of vector graphics is that they scale properly and always give
the graphics a smooth appearance. Vector graphics formats which work
well with LATEX are .eps and .pdf.

Programs such as gnuplot may be used to generate graphs in vec-
tor graphics format from your data. A common practice is generating
complicated graphs with gnuplot and including them with LATEX. �is
mechanism is relatively easy. However, gnuplot may not always have the

72 Chapter 4

Including an external
graphics �le with the
includegraphics command.
�e input to the right results
in the output to the le�.
�e Doctor Fun picture
is included with the kind
permission from David
Farley.

Figure 4.2

\begin{figure*}[tbp]
\centering
\includegraphics

[width=70mm]
{vb4dummies.jpg}

\end{figure*}

right graph output style. Another problem with externally generated
pictures is that they may not always give a consistent look and feel as a re-
sult of di�erences in fonts and scaling. �e pgfplots package overcomes
these problems. (�is package is explained in Chapter 7.)

4.4 �e graphicx Package
�e graphicx package provides a command called \includegraphics
which supports the inclusion of external graphics in an easy way.

\includegraphics[〈key-value list〉]{〈file〉}
�is includes the external graphics �le 〈file〉. �e optional argument
is a 〈key〉=〈value〉 list controlling the scale, size, rotation, and other
aspects of the picture. �e following describes some of the possible keys.
Information about other 〈key〉=〈value〉 combinations may be found in
the graphicx package documentation [Carlisle and Ratz, 1999].

angle �e the rotation angle in degrees.

width �e width of the resulting picture. �e width should be speci�ed
in a proper dimension, e.g., 5cm, 65mm, 3in, and so on. �e height
of the picture is scaled to match the given width.

height �e height of the resulting picture. �is is the dual of the width
key.

type Speci�es the �le type. �e �le type is normally determined from
the �lename extension.

Figure 4.2 shows an example of the \includegraphcs command. In
this example, the command is used in the body of a figure*, which is
the unnumbered version of a figure. �e picture is a reproduction from
the Dr Fun pages (http://www.ibiblio.org).

4.5 Setting Default Key Values
�e graphicx package uses the keyval package to handle its 〈key〉=
〈value〉 pairs. �e keyval package lets you de�ne a default value for

http://www.ibiblio.org

Presenting External Pictures 73

each key. �e following is a short explanation. A full explanation may
be found Section 11.2. Basically, the command \setkeys{Gin}{〈list〉}
sets the defaults. Here 〈list〉 is a comma-separated 〈key〉=〈value〉 list.
�e following is an example, which sets the default width to 6 cm.

\setkeys{Gin}{width=6cm} LATEX Usage

A�er specifying this command there is no more need to specify the
width of the pictures: the width is now 6 cm by default. However, it
is still possible to override this default width by providing an explicit
width.

Sometimes it is nicer to specify a width and/or height as a fraction
of the current page dimensions. �is may be done as follows:

\setkeys{Gin}{width=0.9\textwidth,height=0.9\textheight}
LATEX Usage

4.6 Setting a Search Path

By default \includegraphics searches the current directory for �les.
However, it is also possible to de�ne a search path. �e search path
mechanism works similar to a Unix search path. �e command \graph-
icspath{〈directory list〉} sets the search path to 〈directory list〉,
which consists of a list of directories, each of which should be inside a
brace pair. �e following is an example which sets the search path to
‘./pdf/,./eps’. Notice the absence of commas in the list.
\graphicspath{{./pdf/}{./eps/}} LATEX Usage

4.7 De�ning Graphics Extensions

�e kind of graphics extensions allowed by \includegraphics depends
on the extension of your output �le. �e last argument of \include-
graphics determines the name of the external graphics �le. It is allowed
to omit the �le extension. When \includegraphics sees a �lename
without extension it will try to add a proper extension. �e command
\DeclareGraphicsExtensions{〈extension list〉} lets you specify the
allowed �le extensions which may be added to �lenames without ex-
tensions. �e argument 〈extension list〉 is a comma-separated list of
extensions. �e command works as expected. If an extension is omit-
ted in the required argument of the \includegraphics command, the
〈extension list〉 is searched from le� to right. �e process halts when
an extension is found which “completes” the partial �lename. �e partial
�lename and the extension are used as the external graphics �lename. You
may disallow �lenames without extensions by applying the command
\DeclareGraphicsExtensions{}.

74 Chapter 4

4.8 Conversion Tools
�is section brie�y discusses some approaches to the conversion of graph-
ics formats.

If you only have a few pictures to convert and you’ve never used a
command-line tool to convert pictures then you’re probably best o�
converting your pictures with a program with a graphical user interface.
�e program gimp, which comes with most modern Unix �avours, is free
and is pretty easy to use. It supports the conversion from and to several
graphics formats.

However, if you have to convert many pictures then you may be
better o� with a command-line tool. �e following are some available
tools.

epstopdf Converts from .eps to .pdf. You can also use this program
to convert postscript output from gnuplot.

gs �is is the GhostScript conversion program, which is capable of
conversions to and from more than 300 di�erent graphics formats.
�e following is a shell script which uses gs to convert .eps to
.pdf. �e example is easily modi�ed for other conversions to
.pdf.

Convert from eps to pdf.
GS=/usr/bin/gs
BASENAME=‘basename $1 .eps‘
${GS} -sDEVICE=pdfwrite -dNOPAUSE -dQUIET \

-sOutputFile=${BASENAME}.pdf - < $1

Unix Script

4.9 De�ning Graphics Conversion
�is section brie�y mentions the notion of graphics conversion rules,
which are used to automate the conversion of graphics format �les from
within LATEX. �ese rules work in combination with \includegraphics.
�e actual conversion is speci�ed with the \DeclareGraphicsRule com-
mand, which is not easy to use. You are advised to stick to the allowed
graphics extensions and convert non-allowed formats to allowed formats
by hand, choosing vector graphics if possible. If you use pdfLATEX then
the following extensions are supported: .png, .pdf, .jpg, and .mps. Here
the .mps format is for METAPOST source �les, which are translated
to encapsulated postscript with the aid of the program mpost. Further
information about the \DeclareGraphicsRule command may be found
in [Reckdahl, 2006, Section 9.2] or in the graphics package documen-
tation [D. P. Carlisle, 2003].

Chapter 5
Presenting Diagrams with tikz

This chapter is an introduction to drawing diagrams/pictures using
the tikz package, which is built on top of pgf. Here pgf is a platform-
and format-independent macro package for creating graphics. �e pgf
package is smoothly integrated with TEX and LATEX. As a result tikz also
lets you incorporate text and mathematics in your diagrams. �e tikz
package also supports the beamer package, which is used for creating
incremental presentations. (Chapter 14 is an introduction to beamer.)

�e main purpose of this chapter is to whet the appetite. �e pre-
sentation is mainly based on CVS version 2.00 (CVS2010-01-03) of pgf
and tikz. �e interested reader is referred to the excellent package doc-
umentation [Tantau, 2010] for more detailed information.

�is chapter starts with a section which discusses the advantages and
disadvantages of specifying diagrams. �is is followed by a quick intro-
duction to the tikzpicture environment and some drawing commands.
Next there is a crash course on some of the more common and useful tikz
commands. Finally, there are introductions to some of the tikz libraries.
By the end of this chapter you should know how to draw maintainable,
high-quality graphics consisting of basic shapes such as points, lines,
and circles, but also of trees, �nite state automata, entity-relationship
diagrams, and neural networks.

5.1 Why Specify your Diagrams?

5.2 �e tikzpicture Environment
�e tikz package — tikz is an acronym of ‘tikz ist kein Zeichenpro-
gramm’ — provides commands and environments which let you specify
and ‘draw’ graphical objects in your document. �e package is smoothly
integrated with TEX and LATEX, so graphical objects also can be text.
What is more, the things you specify/draw may have attributes. For ex-
ample, tree nodes have coordinates and may have parts such as children,
grandchildren, and so on. �e package also supports mathematical and
object oriented computations.

Drawing with tikz may be done in di�erent ways, but to simplify
matters we shall do most of our drawing inside a tikzpicture environ-

75

76 Chapter 5

ment. Each tikzpicture results in a box. �e size of the box is the
smallest possible box containing material which is typeset in the box.
Only the relative positions of the coordinates inside a tikzpicture mat-
ter. For example, a tikzpicture consisting of a 2× 2 square which
is drawn at coordinate (1,2) in the tikzpicture results in the same
graphic on your page as a tikzpicture consisting of a 2×2 square which
is drawn at coordinate (0,0) in your tikzpicture. All implicit units
inside a tikzpicture are in centimetres. Scaling a tikzpicture is done
by specifying an optional ‘scale = number’ argument which is passed to
the tikzpicture environment. �is kind of scaling only applies to the
actual coordinates but not to line thicknesses, font sizes, and so on. �is
makes sense, as you would not want, say, the font in your diagrams to be
of a di�erent kind than the font in your running text. �e package also
supports other top-level options.

�e following draws a 0.5× 0.25 crossed rectangle: .
The following draws
a 0.5×0.25 crossed rectangle:

\begin{tikzpicture}
\draw (0.00,0.00) rectangle (0.50,0.25);
\draw (0.00,0.00) -- (0.50,0.25);
\draw (0.00,0.25) -- (0.50,0.00);
\end{tikzpicture}\,.

LATEX Input

Of course the previous example violates almost every rule in the
maintainability book. For example, what if the size of the rectangle were
to change, what if the position were to change, what if the colour were
to change, …?

Fortunately, tikz provides a whole arsenal of commands and tech-
niques which help you keep your diagrams maintainable. One of the
cornerstones is the ability to label nodes and coordinates — a special
kind of nodes — in your tikzpicture. Once you’ve de�ned your labels
you can use them to construct other nodes and shapes. In addition the
package supports hierarchies. Parent settings may be inherited by de-
scendants in the hierarchy. �e second and third next sections explain
how to construct paths, and how to use nodes, coordinates, and labels.
Before we start with them, we shall study the \tikz command and how
to draw grids.

5.3 �e \tikz Command

Using the tikzpicture environment for small in-line diagrams which
only require a simple command is time and space consuming. Fortu-
nately, tikz also de�nes the following command.

\tikz[〈options〉]{〈commands〉}
�is works similar to ‘\begin{tikzpicture}[〈options〉]〈commands〉
\end{tikzpicture}’.

Presenting Diagramswith tikz 77

Drawing a grid.
Figure 5.1 \begin{tikzpicture}

\draw[line width=0.1pt,gray!30,step=1mm]
(0,0) grid (3,2);

\draw[help lines]
(0,0) grid (3,2);

\draw (1,1) -- (2,2) -- (2,1) -- cycle;
\end{tikzpicture}

\tikz[〈options〉] 〈command〉;
If 〈command〉 is a single command then this is equivalent to ‘\tikz

[〈options〉]{〈command〉;}’.

5.4 Grids
Drawing a grid is a useful technique which allows us to quickly relate
the positions of what’s in your picture. Grids are also useful when you
are developing a picture. �e following shows two ways to draw a grid.
�e former way is easier, but it is expressed in terms of the second, more
general, notation.

\draw[〈options〉] 〈start coordinate〉 grid 〈end coordinate〉;
�is draws a grid from 〈start coordinate〉 to 〈end coordinate〉. �e

optional argument may be used to control the style of the grid.
�e option ’step = 〈dimension〉’ is used for setting the distance

between the lines in the grid. �ere are also directional versions ’xstep =
〈dimension〉’ and ’ystep = 〈dimension〉’ for setting the distances in the
x- and y-directions.

\path[〈path options〉] … grid[〈options〉] 〈coordinate〉 … ;
�is adds a grid to the current path from the current position in the

path to 〈coordinate〉. To draw the grid, the option draw is required as
part of 〈path options〉.

Figure 5.1 demonstrates how to draw a basic 3× 2 grid, relative to
the origin. �e grid consists of two superimposed grids, the coarser of
which is drawn on top of the other. �e option ‘gray!20’ in the style of
the �ne grid de�nes the colour for the grid: you get it by mixing 20% grey
and 80% white.

�e option, style really, ‘help lines‘ is very useful because it results
in lines drawn in a subdued colour. For the printable version of this book
the style is rede�ned to make the lines very thin and to set the color to a
combination of 50% black and 50% white. �is was done with the com-
mand \tikzset{help lines/.style={very thin,color=black!50}}
. Styles are explained in Section 5.13.

5.5 Paths
Inside a tikzpicture environment everything is drawn by starting a
path and by extending the path. Paths are constructed using the \path

78 Chapter 5

Creating a path.
Figure 5.2

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,4);
\draw (0,0) circle (2pt)

-- (1,1) rectangle (2,3)
-- (3,4)
-- (2,4) circle (2pt);

\end{tikzpicture}

command. In its basic form, a path is started with a coordinate which
becomes the current coordinate of the path. Next the path is extended
with other coordinates, line segments, nodes or other shapes. Line seg-
ments may be straight line segments or cubic spline segments, which are
also known as cubic splines. Cubic splines are explained in Section 5.7.
Each line segment extension operation adds a line segment starting at
the current coordinate and ending at another coordinate. Path extension
operations may update the current coordinate.

�e optional argument of the \path command is used to control
if, and how the path should be drawn. Adding the option ‘draw’ forces
the drawing of the path. By default the path is not drawn. A semicolon
indicates the end of the path:
\begin{tikzpicture}
\path[draw] (1,0) -- (2,0);
\path (0,0) -- (3,0);
\end{tikzpicture}

LATEX Input

�e �rst \path command in this tikzpicture draws a line segment
from (1,0) to (2,0). �e second \path command results in a line segment
which is not drawn. Still the line segment is considered part of the picture,
so the picture has a width of 3 cm.

�e command \draw is a shorthand for \path[draw]. �e tikz
package has many shorthand notations like this.

Figure 5.2 demonstrates the drawing of a path which starts at position
(0,0). �e path is extended by adding a circle, is extended with a line
segment to (1,2), is extended with a rectangle, and so on. Except for
the ‘circle’ extension operation, each operation changes the current
position of the path.

5.6 Coordinate Labels
Maintaining complex diagrams de�ned entirely in terms of absolute
coordinates is virtually impossible. Fortunately, tikz provides many
techniques which help you maintain your diagrams. One of these tech-
niques is the ability to de�ne coordinate labels and use the resulting labels
instead of the coordinates.

You de�ne a coordinate label by writing ‘coordinate(〈label〉)’ a�er

Presenting Diagramswith tikz 79

the coordinate. De�ning coordinates this way is possible at (almost) any
point in a path. Once the label of a coordinate is de�ned, you can use
‘(〈label〉)’ as if it were the coordinate. �e following, which draws a
crossed rectangle (), demonstrates the mechanism. It is not intended
to excel in terms of maintainability.
The following, which draws a crossed rectangle
(\begin{tikzpicture}
\draw (0.0,0.0) coordinate(lower left)

-- (0.4,0.2) coordinate(upper right);
\draw (0.0,0.2) -- (0.4,0.0);
\draw (lower left) rectangle (upper right);
\end{tikzpicture}), demonstrates the mechanism.

LATEX Input

5.7 Extending Paths
As explained before, paths are constructed by extending them. �ere
are several di�erent kinds of path extension operations. �e majority
of these extension operations modify the current coordinate, but some
don’t. In the remainder of this section it is therefore assumed that an ex-
tension operation modi�es the current coordinate unless this is indicated
otherwise. For the moment it is assumed that none of the coordinates are
relative or incremental coordinates, which are explained in Section 5.11.1.
�e following are the common extension operations.

\path … 〈coordinate〉 …;
�is is the move-to operation, which adds the coordinate 〈coordinate〉

to the path. �e following example uses three move-to operations. �e
�rst move-to operation de�nes the lower le� corner of the grid. �e
remaining move-to operations de�ne the starts of two line segments.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1)

(2,1) -- (3,2);
\end{tikzpicture}

\path … -- 〈coordinate〉 …;
�is is the line-to operation, which adds a straight line segment to

the path. �e line segment is from the current coordinate and ends in
〈coordinate〉. �e following is an example.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (2,0) -- (3,2);
\end{tikzpicture}

\path … .. controls 〈coordinate1〉 and 〈coordinate2〉 .. 〈coordinate3〉 …;
�is is the curve-to operation, which adds a cubic Bézier spline segment to
the path. �e start point of the curve is the current point of the path. �e
end point is 〈coordinate3〉, and the control points are 〈coordinate1〉

80 Chapter 5

Cubic spline in tikz.
Figure 5.3

c1

c2

c3

c4

\begin{tikzpicture}
\draw[help lines] (-2,-4) grid (+2,+4);
\path (-2,+0) coordinate(c1)

(-1,+3) coordinate(c2)
(+0,-3) coordinate(c3)
(+2,-1) coordinate(c4);

\draw[red] (c1) -- (c2) -- (c3) -- (c4);
\draw (c1) circle (2pt)

(c2) circle (2pt)
(c3) circle (2pt)
(c4) circle (2pt)
(c1) .. controls (c2)

and (c3) .. (c4)
(c1) node[anchor=west] {\texttt{c1}}
(c2) node[anchor=west] {\texttt{c2}}
(c3) node[anchor=east] {\texttt{c3}}
(c4) node[anchor=east] {\texttt{c4}};

\end{tikzpicture}

and 〈coordinate2〉.

Figure 5.3 demonstrates the operation. �e curve starts at c1 and
ends at c4. Its control points are given by c2 and c3. �e tangent of
the spline segment at c1 is given by the tangent of the line segment ‘c1
-- c2’. Likewise, the tangent of the spline segment at c4 is given by the
tangent of the line segment ‘c3 -- c4’. �is makes cubic Bézier splines
a perfect candidate for approximating complex curves as a sequence of
spline segments. By properly choosing the start point, the end point, and
the control points of the segments, you can enforce continuity both in
the curves and the �rst derivative. (As a matter of fact, it is also possible
to ensure continuity in the second derivative.) Notice that the start, end,
and control points need not be equidistant, nor need the start and end
point lie on a horizontal line.

\path … .. controls 〈coordinate1〉 .. 〈coordinate2〉 …;

�is is also a curve-to operation. It is equivalent to the operation ‘… ..
controls 〈coordinate1〉 and 〈coordinate1〉 .. 〈coordinate2〉 …’.

\path … -- cycle …;

�is is the cycle operation which closes the current path by adding a
straight line segment from the current point to the last destination point
of a move-to operation. �e cycle operation has three applications. First
it closes the path. Closing a path is required if you wish to �ll the path with
a colour. Second, it properly connects the start and end line segments in
the path. �ird, it increases maintainability as it avoids referencing the
start point of the path. �e following is an example.

Presenting Diagramswith tikz 81

\tikz\draw
(0,0) -- (1,1)
(2,0) -- (3,0) -- (3,1) -- cycle;

\path … -| 〈coordinate〉 …;

�is operation is equivalent to two line-to operations connecting the cur-
rent coordinate and 〈coordinate〉. �e �rst operation adds a horizontal
and the second a vertical line segment. �e following is an example.

\tikz \draw (0.0,0.0) -| (2.0,0.5)
(1.0,1.0) -| (3.0,0.0);

\path … |- 〈coordinate〉 …;

�is operation is also equivalent to two line-to operations connecting
the current coordinate and 〈coordinate〉. �is time, however, the �rst
operation adds a vertical and the second a horizontal line segment. �e
following is an example.

\tikz \draw (0.0,0.0) |- (2.0,1.0)
(1.0,0.5) |- (3.0,0.0);

\path … rectangle 〈coordinate〉 …;

�is is the rectangle operation, which adds a rectangle to the path.
�e rectangle is constructed by making the current coordinate and
〈coordinate〉 the lower le� and upper right corners of the rectangle.
Which coordinate determines which corner depends on the values of
the coordinates. �e following is an example.

\begin{tikzpicture}
\draw (0,0) rectangle (1,1)

rectangle (3,2);
\end{tikzpicture}

\path … circle (〈radius〉) …;

�is is the circle operation, which adds a circle to the path. �e centre
of the circle is given by the current coordinate of the path and its radius
is the dimension 〈radius〉. �is operation does not change the current
coordinate of the path. �e following is an example.

\tikz \draw (0,0) circle (2pt)
rectangle (3,1)
circle (4pt);

\path … ellipse(〈half width〉 and 〈half height〉) …;

�is is the ellipse operation, which adds an ellipse to the path. �e centre
of the ellipse is given by the current coordinate. �is operation does not
change the current coordinate of the path. �e following is an example.

82 Chapter 5

\begin{tikzpicture}[scale=0.5]
\draw[help lines] (0,0) grid (6,4);
\draw (2,2) ellipse (1cm and 1cm)

(3,2) ellipse (3cm and 2cm);
\end{tikzpicture}

\path … arc (〈start angle〉:〈end angle〉:〈radius〉) …;
�is is the arc operation, which adds an arc to the path. �e arc starts
at the current point. �e radius is given by the dimension 〈radius〉.
�e start and end angles of the arc are given by 〈start angle〉 and
〈end angle〉 respectively. �is operation does not change the current
coordinate of the path. �e following is an example. In this example,
the draw option ‘->’ tells the draw to draw the path as an arrow. �e
tikzpicture option ‘>=angle 90’ sets the style of the arrow head.

\begin{tikzpicture}[>=angle 90]
\draw[help lines] (0,0) grid (3,2);
\draw[dashed] (1,1) circle (1cm);
\draw (1,2) coordinate(a) circle (2pt)

(2,1) coordinate(b) circle (3pt)
(1,0) coordinate(c) circle (4pt);

\draw[->,red] (a) arc (90:180:1cm);
\draw[->,red] (b) arc (0:45:1cm);
\draw[->,red] (c) arc (270:225:1cm);
\end{tikzpicture}

\path … arc (〈start angle〉:〈end angle〉:〈radius〉 and 〈half height〉) …;
�is is also an arc operation but this time it adds a segment of an ellipse
to the path.

5.8 Actions on Paths
So far most of our examples have used the default path style. �is may
not always be what you want. For example, you may want to draw a line
in a certain colour, change “its” width, �ll a shape with a colour, and so
on. In tikz terminology you achieve this with path actions, which are
operations on an existing path. You �rst construct the path and then
apply the action. At the basic level the command \draw is de�ned in
terms of an action on a path: the action results in the path being drawn.
As pointed out before \draw is a shorthand for \path[draw].

�e following are some other shorthand commands which are de-
�ned in terms of path actions inside the tikzpicture environment.

\draw
�is is a shorthand for \path[draw].

\tikz
\draw (0,0) -- (3,0);

\fill
�is is a shorthand for \path[fill].

Presenting Diagramswith tikz 83

�e xcolor colours.
Table 5.1

black darkgray lime pink violet

blue gray magenta purple white

brown green olive red yellow

cyan lightgray orange teal

\tikz
\fill[lime] (0,0) rectangle (3,0.5);

\filldraw
�is is a shorthand for \path[filldraw].

\tikz
\filldraw[fill=lime,draw=red]

(0,0) rectangle (3,0.5);

\shade
�is is a shorthand for \path[shade].

\tikz
\shade[left color=lime,right color=teal]

(0,0) rectangle (3,0.5);

Shading paths is possible in many ways. �e reader is invited to read
the pgf manual [Tantau, 2010] for further information.

\shadedraw
�is is a shorthand for \path[shadedraw].

\tikz
\shadedraw[left color=lime,

right color=teal,
draw=red]

(0,0) rectangle (3,0.5);

5.8.1 Colour
�e tikz package is aware of several built-in colours. Some of these
colours are inherited from the xcolor package [Kern, 2007]. Table 5.1
depicts some of them.

De�ning New Colours

�ere are several techniques to de�ne a new name for a colour.
\definecolor{〈name〉}{rgb}{〈red ratio〉,〈green ratio〉,〈blue ratio〉}

�is de�nes a new colour called 〈name〉 in the ‘rgb’ model. �e colour
is the result of combining 〈red ratio〉 parts red, 〈green ratio〉 parts
green, and 〈blue ratio〉 parts blue. All ratios should be reals in the
interval [0 : 1].

\definecolor{〈name〉}{gray}{〈ratio〉}
�is de�nes a new colour called 〈name〉 which has a 〈ratio〉 grey part

84 Chapter 5

in the ‘gray’ model. �e value of 〈ratio〉 should be a real in the interval
[0 : 1].

\colorlet{〈name〉}{〈colour〉!〈percentage〉}
�is de�nes a new colour called 〈name〉 which is the result of mix-

ing 〈percentage〉% 〈colour〉 and (100− 〈percentage〉)% white. Here
〈colour〉 should be the name of an existing colour.

\colorlet{〈name〉}{〈colour1〉!〈percentage〉!〈colour2〉}
�is de�nes a new colour called 〈name〉 which is the result of mixing
〈percentage〉% 〈colour1〉 and (100−〈percentage〉)% 〈colour2〉. Here
〈colour1〉 and 〈colour2〉 should be names of existing colours.

Other, more exotic expressions are also allowed. More information
about the allowed colour mixing expressions may be found in the docu-
mentation of the xcolor package [Kern, 2007].

Using the Colour

Some path actions let you set the colour for the operation. For example,
you may draw a path with the given colour. �ere are di�erent ways to
control the colour. �e option ‘color’ determines the colour for draw-
ing and �lling. It also sets the colour of the text in nodes. (Nodes are
explained in Section 5.9.

You may set the colour of the whole tikzpicture or set the colour
of a given path action. Setting the colour of the whole picture is done by
passing a ‘color=〈colour〉’ option to the environment. Setting the colour
of a path action is done by passing the option to the \path command (or
its derived shorthand commands). �e following is an example which
draws four lines: one in blue, one in red, one in 20% red and 80% white,
and one in 40% red and 60% blue.

\begin{tikzpicture}[color=blue]
\draw (0,0) -- (2,0);
\draw[color=red] (0,1) -- (2,1);
\draw[color=red!20] (0,2) -- (2,2);
\draw[color=red!40!blue] (0,3) -- (2,3);
\end{tikzpicture}

�e tikzpicture environment and the \path command (and de-
rived commands) are pretty relaxed about colours and let you omit the
‘color=’ part when specifying the colour option. �e following is per-
fectly valid.

\begin{tikzpicture}[red]
\draw (0,0) -- (2,0);
\draw[color=blue] (0,1) -- (2,1);
\draw[red!20] (0,2) -- (2,2);
\end{tikzpicture}

Presenting Diagramswith tikz 85

5.8.2 Drawing the Path
As already mentioned, the draw option forces the drawing of a path. By
specifying a ‘draw = 〈colour〉’ option the path will be drawn with the
colour 〈colour〉. Note that setting the draw option overrides the colour
option.

�e following demonstrates the mechanism. �is example draws
two lines. One is draw in red. �e other is drawn in blue.

\begin{tikzpicture}[red]
\draw (0,0) -- (2,0);
\draw[draw=blue] (0,1) -- (2,1);
\end{tikzpicture}

5.8.3 Line Width
�ere are several path actions a�ecting the “line” style, i.e. the style that
determines the line width, the line cap, and the line join. �e following
are some commands which a�ect the line width.

line width=〈dimension〉
�is sets the line width to 〈dimension〉.

\tikz \draw[line width=8pt]
(0,0) -- (2,4pt);

ultra thin
�is sets the line width to 0.1 pt.

\tikz \draw[ultra thin]
(0,0) -- (2,4pt);

very thin
�is sets the line width to 0.2 pt.

\tikz \draw[very thin]
(0,0) -- (2,4pt);

thin
�is sets the line width to 0.4 pt.

\tikz \draw[thin]
(0,0) -- (2,4pt);

semithick
�is sets the line width to 0.6 pt.

\tikz \draw[semithick]
(0,0) -- (2,4pt);

thick
�is sets the line width to 0.8 pt.

\tikz \draw[thick]
(0,0) -- (2,4pt);

very thick
�is sets the line width to 1.2 pt.

86 Chapter 5

\tikz \draw[very thick]
(0,0) -- (2,4pt);

ultra thick

�is sets the line width to 1.6 pt.

\tikz \draw[ultra thick]
(0,0) -- (2,4pt);

5.8.4 Line Cap and Join

�e drawing of a path depends on several parameters. �e line cap de-
termines how lines start and end. �e line join determines how line
segments are joined.

line cap=〈style〉
�is sets the line cap style to 〈style〉. �ere are three possible values for
〈style〉: ‘round’, ‘rect’, and ‘butt’.

\begin{tikzpicture}[line width=10pt]
\draw[help lines] (0,0) grid (3,3);
\draw[line width=1pt,red]

(1,0) -- (1,4) (2,0) -- (2,4);
\draw[line cap=round] (1,3) -- (2,3);
\draw[line cap=rect] (1,2) -- (2,2);
\draw[line cap=butt] (1,1) -- (2,1);
\end{tikzpicture}

line join=〈style〉
�is sets the line join style to 〈style〉. �ere are three possible values

for 〈style〉: ‘round’, ‘miter’, and ‘bevel’.

\begin{tikzpicture}[line width=8pt]
\draw[line join=round]

(0.0,.8)--(0.3,.0)--(0.6,.8);
\draw[line join=miter]

(0.9,.0)--(1.2,.8)--(1.5,.0);
\draw[line join=bevel]

(1.8,.8)--(2.1,.0)--(2.4,.8);
\end{tikzpicture}

miter limit=〈fraction〉
�is option avoids miter joins with sharp angles which protrude too

far beyond the joining point. �is works by specifying a limit on how
far the miter join is allowed to protrude the joining point. If the join
protrudes beyond this limit then the join style is changed to bevel. �e
actual value of the limit is given by the product of 〈fraction〉 and the
line width.

Presenting Diagramswith tikz 87

Using a dash pattern
Figure 5.4 \begin{tikzpicture}

\draw[dash pattern=on 4mm off 1mm on 4mm off 2mm]
(0,0.5) -- (2,0.5);

\draw[dash pattern=on 3mm off 2mm on 3mm off 3mm]
(0,0.0) -- (2,0.0);

\end{tikzpicture}

Using a dash phase.
Figure 5.5 \begin{tikzpicture}[dash pattern=on 3mm off 2mm]

\draw[dash phase=3mm] (0,0.5) -- (2,0.5);
\draw[dash phase=2mm] (0,0.0) -- (2,0.0);
\end{tikzpicture}

\begin{tikzpicture}
[line width=8pt,line join=miter]

\draw (0,0) -- (0.25,2) -- (0.5,0);
\draw[miter limit=8]

(1,0) -- (1.25,2) -- (1.5,0);
\end{tikzpicture}

5.8.5 Dash Patterns

�e drawing of lines also depends on the dash pattern setting. By default
it is solid. �e following shows the relevant path actions which a�ect
dash patterns.

dash pattern=〈pattern〉
�is sets the dash pattern to 〈pattern〉. �e syntax for 〈pattern〉 is the
same as in METAFONT. Basically 〈pattern〉 speci�es a cyclic pattern
of lengths which determine when the line should be drawn (when it’s
on) and when it should not be drawn (when it’s o�). You usually write
the lengths in terms of multiples of points (pt). Figure 5.4 presents an
example which uses millimetres for simplicity.

dash phase=〈dimension〉
�is shi�s the dash phase by 〈dimension〉. Figure 5.5 shows an example.

solid
�is is the default dash pattern style: it produces a solid line.

\tikz \draw[solid] (0,0) -- (2,0);

dotted
�is is a prede�ned dash pattern style which produces a dotted line.

\tikz \draw[dotted] (0,0) -- (2,0);

densely dotted
�is is a prede�ned dash pattern style which produces a densely dotted

line.

88 Chapter 5

\tikz
\draw[densely dotted] (0,0) -- (2,0);

loosely dotted
�is is a prede�ned dash pattern style which produces a loosely dotted

line.
\tikz
\draw[loosely dotted] (0,0) -- (2,0);

dashed
�is is a prede�ned dash pattern style which produces a dashed line.

\tikz \draw[dashed] (0,0) -- (2,0);

densely dashed
�is is a prede�ned dash pattern style which produces a densely dashed

line.
\tikz
\draw[densely dashed] (0,0) -- (2,0);

loosely dashed
�is is a prede�ned dash pattern style which produces a loosely dashed

line.
\tikz
\draw[loosely dashed] (0,0) -- (2,0);

5.8.6 Arrows
Arrows are also drawn using path actions.

arrows=〈arrow head1〉-〈arrow head2〉
�is adds an arrow head to the start and to the end of the path. You may
also omit the ‘arrows=’ and use the shorthand notation ‘〈arrow head1〉-
〈arrow head2〉’. �e arrow head at the start is determined by 〈arrow head1〉.
�e arrow head at the end is determined by 〈arrow head2〉. Omiting
〈arrow head1〉 omits the arrow head at the start of the path. Omitting
〈arrow head2〉 omits the arrow head at the end. �e following example
demonstrates the mechanism for the default arrow head types ‘<’ and ‘>’.
Table 5.2 list some of the available arrow head styles, some of which are
provided by the tikz library arrows.

\begin{tikzpicture}
\draw[->] (0,2) -- (1,2) -- (2,3);
\draw[<-] (0,1) -- (1,1) -- (2,2);
\draw[<->] (0,0) -- (1,0) -- (2,1);
\end{tikzpicture}

>=〈end arrow type〉
�is rede�nes the default end arrow head style ‘>’. As already mentioned,
some existing arrow head styles are listed in Table 5.2. Some of these
arrow head types are provided by the tikz library arrows. Most styles

Presenting Diagramswith tikz 89

Some available arrow head
types. �e arrows in the up-
per part of the table are prede-
�ned. �e arrows in the lower
part of the table are provided
by the tikz library arrows.

Table 5.2 Prede�ned

Style Arrow Style Arrow Style Arrow

stealth to latex
space

Provided by arrows

open triangle 90 triangle 90 angle 90
open triangle 60 triangle 60 angle 60
open triangle 45 triangle 45 angle 45
open diamond diamond o
open square square *

in the table also have a “reversed style”, for example ‘latex reversed’,
which just changes the direction of the ‘latex’ arrow head. �e library
may be loaded with the command \usetikzlibrary{arrows}, which
should be in the preamble of your document. �e following provides a
small example.

\begin{tikzpicture}
\draw[>=latex,->]

(0,2) -- (1,2) -- (2,3);
\draw[>=stealth,<-]

(0,1) -- (1,1) -- (2,2);
\draw[>=diamond,<->]

(0,0) -- (1,0) -- (2,1);
\end{tikzpicture}

5.8.7 Filling a Path
Not only can you draw paths but also can you �ll them or draw them
with one colour and �ll them with a di�erent colour. �e only require-
ment is that the path be closed. Closing a path is done with the ‘cycle’
annotation. �e following are the relevant commands.

\path[fill=〈colour〉] 〈paths〉;
�is �lls each path in 〈paths〉with the colour 〈colour〉. Unclosed paths
are closed �rst. It is also allowed to use ‘color=〈colour〉’. Finally, the
option ‘fill’ on its own �lls the paths with the last de�ned value for
fill or for color.

\begin{tikzpicture}[scale=0.4,fill=cyan]
\path[fill]

(0,0) rectangle (1,1);
\path[fill=red]

(2,0) -- (3,0) -- (3,1) -- cycle;
\path[fill,color=blue]

(4,0) -- (5,0) -- (5,1);
\end{tikzpicture}

90 Chapter 5

\fill[〈options〉] 〈paths〉;
�e command \fill on its own works just as \path[fill=〈colour〉]
, where 〈colour〉 is the last de�ned value for fill or for color. Using
\fill with options works as expected. �e options are passed to \path
and the paths in 〈paths〉 are �lled.

\begin{tikzpicture}[scale=0.4,fill=cyan]
\fill[color=teal]

(0,0) -- (1,0) -- (1,1);
\fill[fill=green]

(0,1) -- (0,2) -- (1,2) -- cycle;
\fill[black]

(2,0) -- (3,0) -- (3,1) -- cycle;
\fill(2,1) -- (2,2) -- (3,2);
\end{tikzpicture}

\filldraw[options] 〈paths〉;
�e command \filldraw �lls and draws the path. �e style ‘draw’

determines the drawing colour and the style ‘fill’ determines the �lling
colour. Both styles may be set in the optional argument. �e following
is an example.

\begin{tikzpicture}
\filldraw[ultra thick,fill=yellow]

(0,0) rectangle (2,2);
\filldraw[very thick,fill=blue,draw=red]

(1,1) circle (0.5cm);
\end{tikzpicture}

5.8.8 Path Filling Rules

�ere are two options which control how overlapping paths are �lled.
�ese rules determine which points are inside the shape. By cleverly using
these options and by making paths overlap properly you can construct
“holes” in the �lled areas.

�e Even Odd Rule �e option ‘even odd rule’ is the other rule
which determines which points are inside the shape. A point is con-
sidered inside the shape if a semi-in�nite line originating at the point
crosses an odd number of paths. Figure 5.6 depicts an example. �is
example also does not have self-overlapping paths.

�e Nonzero Rule �e option ‘nonzero rule’ is the default. To deter-
mine if a point, p , is inside a collection of paths, let c+ be the number
of clockwise draw paths the point is in, and let c− be the number of
anticlockwise draw paths the point is in. �en p is considered inside
the collection of paths if c+ 6= c−. Stated di�erently, p is inside if
c+− c− 6= 0, hence the name ‘non-zero rule’.

To complicate matters, closed paths may “overlap” themselves and
this may result in points which are in clockwise as well as anticlockwise

Presenting Diagramswith tikz 91

Using the ‘even odd rule’ to
determine which areas are
�lled. �ere are three rect-
angular paths. For the ‘even
odd rule’ an area is �lled if
it requires the crossing of an
odd number of lines to get
from inside the area to “in�n-
ity”.

Figure 5.6 \begin{tikzpicture}[fill=blue!20,scale=0.5]
\fill[even odd rule]

(0,2) -- (0,3) -- (5,3) -- (5,2)
(2,0) -- (3,0) -- (3,5) -- (2,5)
(1,1) -- (4,1) -- (4,4) -- (1,4);

\draw (0,3) -- (5,3) -- (5,2) -- (0,2) -- (0,3);
\draw (3,0) -- (3,5) -- (2,5) -- (2,0) -- (3,0);
\draw (1,1) -- (4,1) -- (4,4) -- (1,4) -- (1,1);
\end{tikzpicture}

Determining the �lled area
with the ‘nonzero rule’. �e
�ll involves three rectangles.
One rectangle is drawn clock-
wise; the other rectangles are
drawn anticlockwise. �e
red arrow corresponds to the
clockwise shape; the others to
the anticlockwise shapes. For
the ‘nonzero rule’ a point, p
is �lled if c+ 6= c−, where c+

is the number of clockwise shapes p is in and c− the number of anticlockwise shapes p is in. Note that c+ 6= c− if and only if
c+− c− 6= 0 (hence nonzero rule).

Figure 5.7 \begin{tikzpicture}[fill=blue!20,scale=0.5]
\fill (0,2) -- (0,3) -- (5,3) -- (5,2)

(2,0) -- (3,0) -- (3,5) -- (2,5)
(1,1) -- (4,1) -- (4,4) -- (1,4);

\draw[red,->]
(0,3) -- (5,3) -- (5,2) -- (0,2) -- (0,3);

\draw[blue,->]
(3,0) -- (3,5) -- (2,5) -- (2,0) -- (3,0);

\draw[->]
(1,1) -- (4,1) -- (4,4) -- (1,4) -- (1,1);

\end{tikzpicture}

sub-paths. To determine if a point, p , is inside the paths, let ` be a semi-
in�nite line originating at p . �en p is inside the paths if the number
of times ` crosses a clockwise drawn line di�ers from the number of
times ` crosses an anticlockwise line. Figure 5.7 depicts an example. �is
example does not have self-overlapping paths.

5.9 Nodes and Node Labels
Technical pictures with lines only are rare. Usually, you want your dia-
grams to contain some text or math. Fortunately, tikz has a mechanism
for adding text, math, and other typesettable material to paths. �is is
done using the node path operation.

\path … node(〈label〉)[〈options〉]{〈content〉} … ;
�e node path extension operation places 〈content〉 at the current

position in the path using the options 〈options〉 and associates the label
〈label〉 with the node. �e outer shape of the node is only drawn if
‘draw’ is part of 〈options〉. �e default shape is a rectangle but other
shapes are also de�ned. �e next section explains how to control the
node shape. �e texts ‘(〈label〉)’ and ‘[〈options〉]’ are optional.

\draw … node(〈label〉)[〈options〉]{〈content〉} … ;
�is is similar to the previous \path command.

For example, the command ‘\draw (0,0) node {hello};’ draws the

92 Chapter 5

Nodes and implicit labels.
Figure 5.8

hello
north north east

east

south eastsouthsouth west

west
north west

\begin{tikzpicture}
[every node/.style=scale=0.8]

\draw (0,0) node(hello)[scale=1.25] {hello};
\draw (hello.north) circle (2pt)

node[anchor=south] {north};
\draw (hello.north east) circle (2pt)

node[anchor=south west] {north east};
… % remaining commands omitted.

word ‘hello’ at the origin. Likewise, the following draws a circle and the
word ‘circle’ at position (1,0).
\draw (0,1) % make (0,1) current position.

circle (2pt) % draw circle at current position.
node {circle}; % draw word circle at cur-

rent position.

LATEX Input

When a node gets a label, 〈label〉, then usually the additional la-
bels ‘〈label〉.center’, ‘〈label〉.north’, ‘〈label〉.north east’, …, and
‘〈label〉.north west’ are also de�ned. �e coordinates of these labels
correspond to their names, so ‘〈label〉.north’ is to the north of the node
having label 〈label〉. �is holds for the most common node shapes. Fig-
ure 5.8 provides an example which involves all these auxiliary labels,
except for ‘〈label〉.center’. �e option ‘anchor’ which is used in this
example is explained further on. Basically, it provides a way to override
the node’s default insertion point.

5.9.1 Prede�ned Nodes Shapes
�e previous section demonstrated how to draw node. Nodes have a
shape/style and content. �e default node shape is rectangle. However,
tikz provides many more prede�ned node styles such as coordinate,
rectangle, circle, and ellipse. Additional node shapes may are pro-
vided by including the tikz library shapes. Some of these additional
node shapes are described in the next section. �e remainder of this
section presents some of the basic node shapes. �e shape of a node is
determined by the ‘shape = 〈shape〉’ option. �e following are the basic
prede�ned node shapes:

coordinate �is shape is for coordinates. Coordinates have no 〈content〉.
�ey are not drawn but their positions are used as part of the pic-
ture.

rectangle �is shape is for rectangular nodes. �e rectangle is �t
around 〈content〉. �is is the default option.

circle �is shape is for circles. �e circle is �t around 〈content〉.

ellipse �is shape is for ellipses. �e ellipse is �t around 〈content〉.

Presenting Diagramswith tikz 93

Low-level node control.
Figure 5.9

xx

xxxx

\begin{tikzpicture}
\draw (0,0) grid (3,2);
\draw (1.5,2.5) node(a)[draw,inner sep=0pt,

outer sep=5pt] {xx};
\draw (3.5,1.5) node(b)[draw,inner sep=5pt,

outer sep=0pt] {xx};
\draw (1.5,1.5) node(c)[draw,shape=circle] {xx};
\draw (a.north) circle (2pt);
\draw (b.north) circle (2pt);
\draw (c.north) circle (2pt);
\end{tikzpicture}

�e default height and width of a node may not always ideal. Fortu-
nately, there are options for low-level control. �e minimum width,
height, and size of a node are controlled with the options ’minimum
width = 〈dimension〉’, ’minimum height = 〈dimension〉’, ’minimum size
= 〈dimension〉’. All these options work as “expected”. Not surprisingly,
there are similar options for specifying the maximum width, height, and
size of a node.

�ere are also options to set the inner separation and the outer sep-
aration of the node. Here the inner separation is the extra space which
is added between bounding box of the 〈content〉 and the node shape.
For example, for a rectangular node, the inner separation determines
the amount of space between the content of the node and its rectangle.
Likewise, the outer separation is the extra space which is added to the
outside of the shape of the node. Both settings a�ect the size of the node
and the positions of the auxiliary labels ‘north’, ‘north east’, and so on.
�e options ’inner sep = 〈dimension〉’ and ’outer sep = 〈dimension〉’
set the inner and outer separation.

�e options ’inner xsep = 〈dimension〉’, ’outer xsep = 〈dimension〉’,
’inner ysep = 〈dimension〉’, and ’outer ysep = 〈dimension〉’ control
the separations in the horizontal and vertical directions. �ey work “as
expected”.

Figure 5.9 provides an example demonstrating some of the di�erent
node shape options and low-level control. �e di�erence in the inner
separations of the rectangular nodes manifests itself in di�erent sizes for
the rectangular shapes. Di�erences in the outer separations result in dif-
ferent distances of labels such as ‘north’. �e higher the outer separation
of a node, the further its ‘north’ label is away from its rectangular shape.

5.9.2 Node Options
�is section brie�y explains some of the remaining node options, which
a�ect the drawing of nodes. �e following are some of the more inter-
esting and useful options:

draw
�is forces the drawing of the node shape as part of a \path command.

94 Chapter 5

By default the drawing of nodes is o�.
scale=〈factor〉

�is scales the drawing of the node content by a factor of 〈factor〉. �is
includes the font size, line widths, and so on.

anchor=〈anchor〉
�is de�nes the anchor of the node. �is options draws the node such
that its anchor coincides with current position in the path. All node
shapes de�ne the anchor ‘center’, but most will also de�ne the com-
pass directions ‘north’, ‘north east’, ‘east’, …, and ‘north west’. �e
standard shapes also de�ne ‘base’, ‘base east’, and ‘base west’. �ese
options are for drawing the node on its base line. �e options ‘mid’, ‘mid
east’, and ‘mid west’, which are also de�ned for the standard nodes, are
for drawing the node on its mid anchor, which is half the height of the
character ’x’ above the base line. �e default value for 〈anchor〉 is center.
�e anchor option is useful for relative positioning of nodes.

shift=〈shift〉
�is option shi�s the node in the direction 〈shift〉. �ere are also

directional versions ‘xshift = 〈dimension〉’ and ‘yshift = 〈dimension〉’
for horizontal and vertical shi�ing.

above
�is is equivalent to ‘anchor = south’. �e options ‘below’, ‘left’,

‘right’, ‘above left’, ‘above right’, ‘below left’, and ‘below right’
work in a similar way.

above=〈shift〉
�is combines the options anchor = south and ‘shift = 〈shift〉’. �e

options ‘left = 〈shift〉’, ‘right = 〈shift〉’, …, work in a similar way.
rotate=〈angle〉

Draws the node, but rotates it 〈angle〉 degrees about its anchor point.
pos=〈real〉

�is option is for placing nodes along a path (as opposed to at the current
coordinate). �is option places the node at the relative position on the
path which is determined by 〈real〉, so if 〈real〉 is equal to 0.5 then the
node is drawn mid-way, if it is equal to 1 then it is drawn at the end, and
so on.

pos=sloped
�is option rotates the node such that its base line is parallel to the

tangent of the path at the point where the node is drawn. �is option is
very useful.

midway
�is option is equivalent to using ‘pos = 0.5’. Likewise, the option ‘start’
is equivalent to using ‘pos = 0’, ‘very near start’ is equivalent to using
‘pos = 0.125’, ‘near start’ is equivalent to using ‘pos = 0.25’, ‘near end’
is equivalent to using ‘pos = 0.75’, ‘very near end’ is equivalent to using
‘pos = 0.875’, and ‘end’ is equivalent to using ‘pos = 1’.

Figure 5.10 shows an example of some of these node options. Notice
that several nodes can be placed with pos options for the same path
segment.

Presenting Diagramswith tikz 95

Node placement.
Figure 5.10

a b0.3 0.5

0.
2 0.8

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,4);
\draw (0,1) coordinate(a)

node[anchor=north west] {a}
-- (3,1) coordinate(b)

node[anchor=north east] {b}
node[pos=0.3,anchor=north] {0.3}
node[pos=0.5,anchor=north] {0.5}

(a) .. controls (1,4) and (2,4) .. (b)
node[pos=0.2,sloped,anchor=south] 0.2
node[pos=0.8,sloped,anchor=north] 0.8;

\end{tikzpicture}

Drawing lines between node
shapes.

Figure 5.11

a

b c

d

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,3);
\path (1,1) node(a)[draw,shape=circle] {a};
\path (1,2) node(b)[shape=rectangle] {b};
\path (2,2) node(c)[shape=circle] {c};
\path (2,1) node(d)[draw,shape=rectangle] {d};
\draw (a) -- (b) -- (c.center) -- (d) -- (a.center);
\end{tikzpicture}

5.9.3 Connecting Nodes
�e tikz package is well behaved. It won’t cross lines unless you say so.
�is includes the crossing of borderlines of node shapes. For example,
let’s assume you’ve created two nodes. One of them is a circle, which is
labelled 〈c〉, and the other is a rectangle, which is labelled 〈r〉. When
you draw a line using the command ’\draw (〈c〉) -- (〈r〉);’ then the
resulting line segment will not join the centres of the two nodes. �e
actual line segment will be shorter because the line segment starts at
the circle shape and ends at the rectangle shape. In most cases this is
the desired behaviour. Should you require a line between the centres
then you can always use the ’.center’ notation. Figure 5.11 provides an
example.

5.9.4 Special Node Shapes
We’ve already seen that tikz has coordinate, circle, rectangle, and
ellipse shape styles. Loading the tikz library shapes makes more
shape styles available. You load this library by including it with the
command \includetikzlibrary{shapes} in your document preamble.
�e following are some interesting shape styles.

circle split
�is de�nes a circle with a text and a lower node part. �e node parts
of the circle split are separated by a horizontal line. �e node part
text is the upper and the node part lower is the lower part of the node

96 Chapter 5

�e circle split node style
Figure 5.12

q

00

\tikz \draw (0,0)
node(double)[circle split,draw,double]

{q \nodepart{lower} 00}
(double.lower) circle (1pt)
(double.text) circle (1pt);

A node with rectangle style
and several parts.

Figure 5.13

Row 1
Row 2

Row 3

Row four

\tikz
\node[rectangle split, rectangle split parts=4,

every text node part/.style={align=center},
every two node part/.style={align=left},
every three node part/.style={align=right},
draw, text width=2.5cm]

{ Row 1
\nodepart{two} Row 2
\nodepart{three} Row 3
\nodepart{four} Row four };

shape circle split. �e argument of the node shape determines what
is in the node parts. �is works as follows. You start by typesetting the
default node part, which is text. Next you may switch to a di�erent node
part and typeset that node part. �is may be done several times. �e
command \nodepart{〈part〉} switches to the node part 〈part〉. A�er
switching to the node part 〈part〉 you provide commands that typeset
〈part〉. For example, ‘\node[shape=circle split]{top \nodepart{
lower} bottom}’ typesets a circle split whose text part has ‘top’ in it
and whose lower part has ‘bottom’ in it. �e node shape circle split
inherits all labels from the node shape circle. It also gets a label for the
lower part. �e following is an example. �e node option double in this
example results in a circle with a double line. Figure 5.12 provides an
example.

ellipse split
�is is the ellipse version of circle split. �e following is an example.

top

bottom

\tikz
\draw (0,0)

node[ellipse split,draw]
{top
\nodepart{lower}
bottom};

rectangle split
�is is the rectangle version of circle split. However, the rectangle

version is more versatile. �e rectangle can split horizontally or vertically
into up to 20 parts. �ere are quite a number options for this shape. �e
example in Figure 5.13 draws a rectangle with four parts. �e example
won’t work if the text width isn’t set explicitly. �e reader is referred to
the tikz manual [Tantau, 2010] for further information.

Presenting Diagramswith tikz 97

5.10 Coordinate Systems
�e key to e�ective, e�cient, and maintainable picture creation is the
ability to specify coordinates. Coordinates may be speci�ed in di�er-
ent ways each coming with its own speci�c coordinate system. Within
a coordinate system you specify coordinates using explicit or implicit
notation.

Explicit Explicit coordinate speci�cations are verbose. To specify a co-
ordinate, you write ‘(〈system〉 cs:〈coord〉)’, where 〈system〉 is
the name of the coordinate system and where 〈coord〉 is a coordi-
nate whose syntax depends on 〈system〉. For example, to specify
the point having x-coordinate 〈x〉 and y-coordinate 〈y〉 in the
canvas coordinate system you write ‘(canvas cs:x=〈x〉,x=〈y〉)’.

Implicit Implicit coordinates speci�cations are usually more terse than
explicite coordinate speci�cations. Here, you specify coordinates
using some coordinate system-speci�c notation inside parenthe-
ses. Most examples so far have used the implicit notation for the
canvas coordinate system.

�e remainder of this section studies some of the more useful coordinates
systems. �e notation for explicit coordinate speci�cation being too
verbose, we shall focus on using implicit notation.

Canvas Coordinate System �e most widely used coordinate system
is the ‘canvas’ coordinate system. It de�nes coordinates in terms of
a horizontal and a vertical o�set relative to the origin. �e implicit
notation ‘(〈x〉,〈y〉)’ is the point with x-coordinate 〈x〉 and y-coordinate
〈y〉.

XYZ Coordinate System �e ‘xyz’ coordinate system de�nes coor-
dinates in terms of a linear combination of an x-, a y-, and a z-vector.
By default, the x-vector points 1 cm to the right, the y-vector points
1 cm up, and the z-vector points to (−

p
2/2,−

p
2/2). However, these

default settings can be changed. �e implicit notation ‘(〈x〉,〈y〉,〈z〉)’ is
used to de�ne the point which is located at 〈x〉 times the x-vector plus
〈y〉 times the y-vector plus 〈z〉 times the z-vector.

Polar Coordinate System �e ‘canvas polar’ coordinate system de-
�nes coordinates in terms of an angle and a radius. �e implicit notation
‘(α:r)’ corresponds to the point r × (cosα, sinα). Angles in this coor-
dinate system, as all angles in tikz, should be supplied in degrees.

Node Coordinate System �e ‘node’ coordinate system de�nes coor-
dinates in terms of a label of a node or coordinate. �e implicit notation
‘(〈label〉)’ is the position of the node or coordinate which was given
the label 〈label〉.

98 Chapter 5

Using four coordinate sys-
tems.

Figure 5.14 \begin{tikzpicture}[>=angle 90]
\draw[help lines] (-1,-1) grid (2,3);
\draw[red] (canvas cs:x=1cm,y=2cm) -- (0,3);
\draw[blue,->] (0,0) -- (xyz cs:x=1,y=0,z=0);
\draw[blue,->] (0,0) -- (0,1,0);
\draw[blue,->] (0,0) -- (0,0,1);
\draw (canvas polar cs:radius=2cm,angle=30)

-- (90:2);
\path (0,0) coordinate (origin);
\draw (origin) node circle (2pt);
\end{tikzpicture}

Computing the intersection
of perpendicular lines.

Figure 5.15 \begin{tikzpicture}
\draw[help lines] (0,0) grid +(3,3);
\path (1,1) coordinate (ll);
\path (2,2) coordinate (ur);
\draw (ll) -- (ll -| ur) circle (2pt);
\draw (ll -| ur) -- (ur) circle (3pt);
\draw (ur) -- (ur -| ll) circle (4pt);
\draw (ur -| ll) -- (ll) circle (5pt);
\end{tikzpicture}

Figure 5.14 demonstrates the previous four coordinate systems in
action. �e optional argument of the tikzpicture sets the arrow head
style to the prede�ned style ‘angle 90’.

Perpendicular Coordinate System �e ‘perpendicular’ coordinate
system is a dedicated system for computing intersections of horizontal
and vertical lines. With this coordinate system’s implicit syntax you
write ‘(〈pos1〉 |- 〈pos2〉)’ for the coordinate at the intersection of the in-
�nite vertical line though 〈pos1〉 and the in�nite horizontal line through
〈pos2〉. Likewise, ‘(〈pos1〉 -| 〈pos2〉)’ results in the intersection of the in-
�nite horizontal line though 〈pos1〉 and the in�nite vertical line through
〈pos2〉. �e notation for this coordinate system is quite suggestive as
‘|’ suggests the vertical aspect of the line and ‘-’ suggests the horizontal
aspect of the other line. �e order of the lines is then given by the order
inside the operators ‘|-’ and ‘-|’. Inside the parentheses you are not sup-
posed to use parentheses for coordinates and labels, so you write ‘(0,1
|- 1,2)’, ‘(label |- 1,2)’, and so on. Figure 5.15 demonstrates how to
use the perpendicular coordinate system.

5.11 Coordinate Calculations
Specifying diagrams in terms of absolute coordinates is cumbersome and
prone to errors. What is worse, diagrams de�ned in terms of absolute
coordinates are di�cult to maintain. For example, changing the position
of an n-agon which is de�ned in terms of absolute coordinates requires

Presenting Diagramswith tikz 99

Absolute, relative, and incre-
mental coordinates.

Figure 5.16 \begin{tikzpicture}
\draw[help lines] (0,0) grid +(3,2);
\draw (0,0) -- (+1,0) --

(1,1) -- (+0,1) -- cycle;
\draw (1,1) -- +(+1,0) --

+(1,1) -- +(+0,1) -- cycle;
\draw (2,0) -- ++(+1,0) --

++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}

changing n coordinates. Fortunately, tikz lets you compute coordi-
nates from other coordinates. Used intelligently, this helps reducing the
maintenance costs of your diagrams.

�ere are two kinds of coordinate computations. �e �rst kind in-
volves relative and incremental coordinates. �ese computations depend
on the current coordinate in a path. �ey are explained in Section 5.11.1.
�e second kind of computations are more general. �ey can be used to
compute coordinates from one or several given coordinates, relative or
absolute distances, rotation angles, and projections. �ese computations
are explained in Section 5.11.2.

5.11.1 Relative and Incremental Coordinates
Relative and incremental coordinates are coordinates which are com-
puted relative to the current coordinate in a path. �e �rst doesn’t change
the current coordinate whereas the second does change it.

Relative coordinate A relative coordinate constructs a new coordinate
at an o�set from the current coordinate without changing the
current coordinate. �e notation ‘+〈offset〉’ speci�es the relative
coordinate which is located at o�set 〈offset〉 from the current
coordinate.

Incremental coordinate An incremental also coordinate constructs a
new coordinate at an o�set from the current coordinate. �is
time, however, the new coordinate becomes the current coordi-
nate. You use the implicit notation ‘++〈offset〉’ for incremental
coordinates.

Figure 5.16 provides an example that draws three squares. �e �rst square
is drawn using absolute coordinates, the second with relative coordinates,
and the last with incremental coordinates. Clearly, the drawing with
relative and incremental coordinates should be preferred as it improves
the maintenance of the picture. For example, moving the �rst square
requires changing four coordinates, whereas moving the second or third
square requires changing only the start coordinate. Using a relative
coordinate also improves the maintainability of the grid.

100 Chapter 5

5.11.2 Complex Coordinate Calculations

Coordinate computations
with partway modi�ers.

Figure 5.17

a

b

c
d

\begin{tikzpicture}
\draw[help lines] (0,0) grid +(3,5);
\draw (2.0,1.0) circle (1pt)

coordinate(a)
node[anchor=west] {a}

(2.0,4.0) circle (1pt)
coordinate(b)
node[anchor=west] {b}

($(a)!0.666!(b)$) circle (1pt)
node[anchor=west] {c}

($(a)!0.666!30:(b)$) circle (1pt)
node[anchor=east] {d};

\end{tikzpicture}

Coordinate computations
with partway and distance
modi�ers.

Figure 5.18 \begin{tikzpicture}
\draw[help lines] (-3,0) grid +(3,4);
\draw (0,0) --

($(0,0)! 1! 30:(0,4)$) coordinate(a)
($(0,0)!2cm! (a)$) coordinate(b)
($(0,0)!2cm!-15:(a)$) coordinate(c)
($(0,0)!2cm!-30:(a)$) coordinate(d);

\draw[-open triangle 90]
(b) .. controls (c) .. (d);

\end{tikzpicture}

Coordinate computations
with projection modi�ers.

Figure 5.19

a

b

c

\begin{tikzpicture}[>=open triangle 90]
\draw[help lines] (0,0) grid +(3,4);
\draw (1,1) coordinate(a) node[anchor=north] {a}

-- (1,2) coordinate(b) node[anchor=east] {b}
-- (2,3) coordinate(c) node[anchor=west] {c}
-- cycle;

\draw[->] (b) -- ($(a)!(b)!(c)$);
\draw[->] (c) -- ($(b)!(c)!(a)$);
\draw[->] (a) -- ($(c)!(a)!(b)$);
\end{tikzpicture}

Finally, tikz o�ers complex coordinate calculations. However, these
calculations are only available if the tikz library calc is loaded in the
preamble: \usetikzlibrary{calc}.

([〈options〉]$〈coordinate computation〉$)
�is is the general syntax. �e 〈coordinate computation〉 should:

1. Start with ‘〈factor〉*〈coordinate〉〈modifiers〉’. Here 〈modifiers〉
is a sequence of one or more 〈modifier〉s and ‘〈factor〉*’ is an
optional multiplication factor which defaults to 1. Both are de-
scribed further on.

Presenting Diagramswith tikz 101

2. Continue with one or more expressions of the form: ‘〈sign op-
tion〉〈factor〉*〈coordinate〉〈modifiers〉’, where 〈sign option〉
is an optional ‘+’ or ‘-’.

〈factor〉
Each 〈factor〉 is an optional numeric expression which is parsed by the
\pgfmathparse command. Examples of valid 〈factor〉s are ‘1.2’, ‘{3 * 4}’,
‘{3 * sin(60)}’, ‘{3 + (2 * 4)}’, and so on. Inside the braces it is safe
to use parentheses, except for the top level. �e reason why parentheses
do not work at the top level is that 〈factor〉s are optional and that the
opening parenthesis are reserved for the start of a coordinate. �erefore,
compound expressions at the top level are best put inside braces as this
makes parsing easier at the top level.

〈modifier〉
A 〈modifier〉 is a post�x operator which acts on the coordinate preced-

ing it. �ere are three di�erent kinds: 〈pmod〉, 〈dmod〉, and 〈prmod〉. Each
of them is of the form ‘!〈stuff〉’ and it is used a�er a coordinate. To ex-
plain the modi�ers we shall write 〈partway modifier〉 for 〈coordinate〉
!〈pmod〉, shall write 〈distance modifier〉 for 〈coordinate〉!〈dmod〉,
and shall write 〈projection modifier〉 for 〈coordinate〉!〈prmod〉.

〈partway modifier〉
�ere are two di�erent forms of 〈partway modifier〉s. �e �rst form
is ‘〈coordinate1〉!〈factor〉!〈coordinate2〉’ �e resulting coordinate
is given by

〈coordinate1〉+ 〈factor〉× (〈coordinate2〉− 〈coordinate1〉) .

In words this is the coordinate which is at 〈factor〉× 100% distance
along the line between 〈coordinate1〉 and 〈coordinate2〉.

A 〈partway modifier〉may also have the complex form ‘〈coordinate1〉
!〈factor〉!〈angle〉:〈coordinate2〉’. �e result of this complex form is
given by �rst computing 〈coordinate1〉!〈factor〉!〈coordinate2〉 and
rotating the resulting coordinate about 〈coordinate1〉 over 〈angle〉 de-
grees. Figure 5.17 presents an example of coordinate computations in-
volving partway modi�ers.

〈distance modifier〉
�e next modi�er is the 〈distance modifier〉. �is modi�er has

the form ‘〈coordinate1〉!〈distance〉:〈angle〉!〈coordinate2〉’, where
‘:〈angle〉’ is optional.

�e simpler form ‘〈coordinate1〉!〈distance〉!〈coordinate2〉’ reults
in the coordinate which is at distance 〈distance〉 from 〈coordinate1〉
in the direction from 〈coordinate1〉 to 〈coordinate2〉. For example, if
the two coordinates are at distance 2 cm apart then setting 〈distance〉
to 1cm gives you the point halfway between the two coordinates.

�e more complex form of the distance modi�er is similar and
works in a similar way as the partway modi�er. �is time you write
‘〈coordinate1〉!〈distance〉:〈angle〉!〈coordinate2〉’. �e result is ob-
tained by �rst computing 〈coordinate1〉!〈distance〉!〈coordinate2〉

102 Chapter 5

and rotating the result about 〈coordinate1〉 over 〈angle〉 degrees in
counter-clockwise direction. Figure 5.18 presents an example of coordi-
nate computations involving distance modi�ers.

〈projection modifier〉
�e �nal 〈modifier〉 is 〈projection modifier〉. �is modi�er is of the
form ‘〈coordinate1〉!〈coordinate2〉!〈coordinate3〉’

1 and it results in
the projection of 〈coordinate2〉on the in�nite line through 〈coordinate1〉
and 〈coordinate3〉. Figure 5.19 presents an example of coordinate com-
putations with projection modi�ers. (For some reason my tikz version
doesn’t like extra space around ‘!’ inside a 〈projection modifier〉. It is
not clear whether this is a feature.)

5.12 Options
Many tikz commands and environments depend on options. Usually
these options are speci�ed using ‘〈key〉 = 〈value〉’ combinations. Some
combinations have shorthand notations. For example, ‘〈colour〉’ is a
shorthand notation for ‘〈color〉 = 〈colour〉’. Options are best de�ned
by passing their 〈key〉 = 〈value〉 combinations as part of the optional
argument. However, there is another mechanism.

\tikzset{〈options〉}
Sets the options in 〈options〉. �e options are set using the pgfkeys

package. �is package is quite powerful but explaining it goes beyond the
scope of an introduction like this chapter. Roughly speaking, processing
the keys works “as expected” for “normal” usage.

5.13 Styles
One of the great features of tikz is styles. De�ning a style for your
graphics has several advantages.

Control You can use styles to control the appearance. For example,
by carefully designing a style for drawing auxiliary lines, you can
draw them in a style which makes them appear less prominently in
the picture. Other styles may be used to draw lines which should
stand out and draw attention.

Consistency Drawing and colouring sub-parts with a carefully chosen
style guarantees a consistent appearance of your diagrams. For
example, if you consistently draw help lines in a dedicated, easily
recognisable style then it makes it easier to recognise them.

Reusability Styles which are de�ned once can be reused several times.

Simplicity Changing the appearance of a graphical element with styles
with well-understood interfaces is much easier and leads to fewer
errors.

1�e manual on Page 119 also mentions an angle but it is not explained how to use
it….

Presenting Diagramswith tikz 103

Prede�ning options with the
\tikzset command.

Figure 5.20 \tikzset{thick dashed/.style={thick,dashed}}
\begin{tikzpicture}

[{help lines/.style={ultra thin,blue!30}]
\draw[thick dashed] (0,0) rectangle (1,1);
\draw[help lines] (1,1) rectangle (2,2);
\end{tikzpicture}

Re�nement You can stepwise re�ne the way certain graphics are draw.
�is lets you postpone certain design decisions while still letting
you draw your diagrams in terms of the style. By re�ning the style
at a later stage, you can �ne-tune the drawing of all the relevant
sub-graphics.

Maintainability �is advantage is related to the previous item. Un-
foreseen changes in global requirements can be implemented by
making a few local changes.

Styles a�ect options. For example, the prede�ned ‘help lines’ style
sets draw to ‘black!50’ and sets ‘line with’ to ‘very thin’. You can set
a style at a global or at a local level. �e following command de�nes a
style at a global level.

\tikzset{〈style name〉/.style={〈list〉}}
�is de�nes a new style 〈style name〉 and gives it the value 〈list〉,

where 〈list〉 is a list de�ning the style. In its basic usage 〈list〉 is a
list of ground options, but it is also possible to de�ne styles which take
arguments. �e following example de�nes a style Cork which sets draw
to red and uses a thick line.

\tikzset{Cork/.style={draw=red,thick}}
\tikz \draw[Cork]

(0,0) rectangle (1,1);

De�ning a style at a local level is done by passing a ’〈style name〉 =
〈list〉’ as an option.

〈style name〉/.style={〈list〉}
�is de�nes 〈style name〉 in the scope of the environment or command

which takes the option. �is mechanism may also be used to temporarily
override the existing de�nition of 〈style name〉. Figure 5.20 provides
an example.

5.14 Scopes
Scopes in tikzpicture environments serve a similar purpose as blocks
in a programming language and groups in LATEX. �ey allow you to
temporarily change certain settings upon entering the scope and restore
the previous settings when leaving the scope. In addition tikz scopes
let you execute code at the start and end of a scope. Scopes in tikz are
implemented as an environment called ‘scope’. Scopes depend on the
following style.

104 Chapter 5

Using scopes
Figure 5.21 \begin{tikzpicture}

\begin{scope}[fill=gray!50]
\fill (0.5,1.5) circle (0.5);
\begin{scope}[fill=gray]

\fill (1.5,0.5) circle (0.5);
\end{scope}
\fill (2.5,1.5) circle (0.5);

\end{scope}
\draw (0,0) rectangle (1,1)

{ [rounded corners]
rectangle (2,2) }

(2,1) rectangle (3,0);
\end{tikzpicture}

every scope
�is style is installed at the start of every scope. �e style is empty

initially. Using the mechanisms which are explained in the previous
section you can either set the value of this style using or set the style
with the options of a tikzpicture environment.

\begin{tikzpicture}[every scope/.style={〈list〉}]
…
\end{tikzpicture}

LATEX Usage

�e following options allow you to execute code at the start and end
of the scope.

execute at begin scope=〈code〉
�is option results in executing 〈code〉 at the start of the scope.

execute at end scope=〈code〉
�is option results in executing 〈code〉 at the end of the scope.

�e tikz library scopes de�nes a shorthand notation for scopes. It
lets you write ‘{ [〈options〉] 〈stuff〉 }’ for ‘\begin{scope}[〈options〉]
〈stuff〉 \end{scope}’. Interestingly you can also have scopes inside paths.
However, options of a local scope in a path do not a�ect path options
such as line thickness, colour and so on which apply to the whole path.
Figure 5.21 depicts an example.

5.15 �e \foreach Command
As if tikz productivity isn’t enough, its pgffor library provides a very
�exible foreach command.

\foreach 〈macros〉 in {〈list〉} {〈statements〉}
Here 〈macros〉 is a forward slash-delimited list of macros and 〈list〉

is a comma-delimited list consisting of lists of forward slash-delimited
values. For each list of values in 〈list〉, the \foreach command binds the
i -th value of the list to the i -th macro in 〈macros〉 and then carries out
〈statements〉. Figure 5.22 depicts an example. Notice that the previous

Presenting Diagramswith tikz 105

�e \foreach command.
Figure 5.22

1 2

34

\tikz
\foreach \pos/\text in

{{0,0}/1,{1,0}/2,{1,1}/3,{0,1}/4}
{

\draw (\pos) node {\text};
}

Shorthand notation for the
\foreach command. �e no-
tation in the upper part of the
table involves ranges which
depend on an initial value and
a next value which determines
the increment. �e short-
hand notation in the middle
part depends only on the ini-
tial value and the �nal value
in the range. Here the incre-
ment is 1 if the �nal value is
greater than the initial value.
Otherwise the increment is
−1. �e lower part of the ta-
ble demonstrates the \fore-
ach command also allows pattern-matching.

Table 5.3 Command Yields

\foreach \x in {1,2,...,6} {\x,} 1, 2, 3, 4, 5, 6,
\foreach \x in {1,3,...,10} {\x,} 1, 3, 5, 7, 9,
\foreach \x in {1,3,...,11} {\x,} 1, 3, 5, 7, 9, 11,
\foreach \x in {0,0.1,...,0.3} {\x,} 0, 0.1, 0.20001, 0.30002,
\foreach \x in {a,b,...,d,9,8,...,6} {\x,} a, b, c, d, 9, 8, 7, 6,
\foreach \x in {7,5,...,0} {\x,} 7, 5, 3, 1,
\foreach \x in {Z,X,...,M} {\x,} Z, X, V, T, R, P, N,

\foreach \x in {1,...,5} {\x,} 1, 2, 3, 4, 5,
\foreach \x in {5,...,1} {\x,} 5, 4, 3, 2, 1,
\foreach \x in {a,...,e} {\x,} a, b, c, d, e,

\foreach \x in {2ˆ1,2ˆ...,2ˆ6} {\x,} 21, 22, 23, 24, 25, 26

\foreach \x in {0\pi,0.5\pi,...\pi,2\pi} {\x,} 0π, 0.5π, 1.5π, 2.0π,
\foreach \x in {A_1,..._1,D_1} {\x,} A1, B1, C1, D1,

example demonstrates that grouping may be used to construct values
in 〈list〉 with commas in them. In general this is a useful technique.
However, since coordinates are very common, there is no need to turn
coordinates into a group.

It it also possible to use \foreach inside the \path command. �e
following is an example, which also demonstrates that tikz also supports
a limited form of arithmetic.

\tikz \draw (0,-0.8)
\foreach \angle in {0,90,180,270} {

-- (\angle:0.8)
(\angle:1.0) + (\angle:0.2)

\foreach \fraction in {1,2,3,4,5} {
-- +(\angle+\fraction*72:0.2)

} -- cycle (\angle:0.8)
};

If there is only one macro in 〈macros〉 then shorthand notations are
allowed in 〈list〉 which may be used for “regular” lists of values. Some
examples of these shorthand notations are listed in Table 5.3. �e table
is based on the tikz documentation.

106 Chapter 5

5.16 �e let Operation
�e let operation binds expressions to “variables” inside a path. �e
following is the general syntax.

\path … let 〈assignments〉 in …;
Here 〈assignments〉 is a comma-delimited list of assignments. Each

assignment is of the form ‘〈register〉 = 〈expression〉’. To carry out the
assignment, 〈expression〉 is evaluated and then assigned to 〈register〉,
which is some variable which is local to tikz. A�er the assignments, the
values of the variables may be got using the macros \n, \p, \x, and \y.
However, this is only possible in the scope of the assignment lasting from
‘in’ to the semicolon at the end of the path operation. �e assignment
mechanism respects the tikz scoping rules.

�ere are two kinds of 〈register〉s in assignments of the let opera-
tion. Both are written as macro calls. �e �rst kind are number registers,
which are written as \n{〈name〉}. Here 〈name〉 is just a convenient label,
which may be almost any combination of characters, digits, space char-
acters, and other symbols, except for special characters and the dot. As
the name suggests, number registers store numeric values. �e second
kind of register is the point register. Point registers start with \p{〈name〉}
. �ey store coordinate values. �e following explains both 〈register〉s
in more detail.

\n{〈name〉} = 〈expression〉
�is is for assigning a numeric value to the number register 〈name〉. �e
command \n{〈name〉} returns the current value of the number register
〈name〉. �e following shows how to use number registers.

\tikz
\draw let \n0 = 0, \n1 = 1 in

let \n{the sum} = \n0 + \n1 in
(0,0) -- (\n1,\n0) --

(\n1,\n{the sum});

\p{〈name〉} = 〈expression〉
�is is for assigning points to the point register 〈name〉. �e command
\p{〈name〉} returns the current (point) value of the point register 〈name〉.
�e x- and y-coordinates of the point register may be got with the
commands \x{〈name〉} and \y{〈name〉}. �e following is an example
which assumes that the tikz library calc has been loaded. Note that
this example can also be written with a single let operation.

\tikz \draw
let \p{ll} = (0,0),

\p{ur} = (1,1) in
let \p{ul} = (\x{ll},\y{ur}),

\p{lr} = ($\p{ll}!1!90:\p{ul}$) in
(\p{ll}) -- (\p{lr}) -- (\p{ur}) --
(\p{ul}) -- cycle;

Presenting Diagramswith tikz 107

Simple to path example.
Figure 5.23

1
4

3
4

\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw[out=30,in=120]

(0,0) to node[pos=0.25,above] {$\frac{1}{4}$}
node[pos=0.75,above] {$\frac{3}{4}$}
(2,0);

\end{tikzpicture}

5.17 �e To Path Operation
�is section describes the ‘to’ path operation which lets you connect two
nodes in a given style. For example, writing ‘\path (0,0) to (1,0);’ give
you the same as ‘\path (0,0) -- (1,0);’ but ‘\path (0,0) to[out=45,in=135]
(1,0);’ connects the points with an arc which leaves the point (0,0) at
45◦ and enters (1,0) at 135◦.

It is also possible to de�ne styles for to operations. �is lets you draw
complex paths with a single operation. �e general syntax of the to path
operation is as follows.

\path … to[〈options〉] 〈nodes〉 (〈coordinate〉) …;
�e 〈nodes〉 are optional nodes which are placed on the path. Figure 5.23
presents an example.

�e following style is de�ned for to paths.
every to

It is installed at the beginning of every to path. �e following is an
example.

\tikzset{every to/.style={out=90,in=180}}

\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (0,0) to (2,2)

(0,0) to (1,1);
\end{tikzpicture}

Options a�ect the style of to paths. �e following is arguably the
more important style.

to path=〈path〉
With this option, the following path is inserted: ‘{[every to,〈options〉]
〈path〉}’. Here 〈options〉 are the options passed to the to path. Inside
〈path〉 you can use the commands \tikztostart, \tikztotarget, and
\tikztonodes. �e value of \tikztostart is the start node of and that
of \tikztotarget the end node. �e value of \tikztonodes is given
by 〈nodes〉, i.e. the nodes of the to path. It should be noted that the
values returned by \tikztostart and \tikztotarget do not include
parentheses.

Figure 5.24 demonstrates how to de�ne a ‘to path’ style called ‘hvh’
(for horizontal, vertical, horizontal), which may be used to connect two
points using three line segments. �e �rst line segment is horizontal, the

108 Chapter 5

A user-de�ned ‘to path’ style.
�e \tikzseton Line 1 in the
input de�nes a new ‘to path’
style called hvh. Lines 2–
5 de�ne the actions of the
style. �e commands \tikz-
tostart, \tikztotarget, and
\tikztonodes are determined
by the \path command. �e
command \tikztostart is
the start of the path, \tikztotarget is the destination of the path, and \tikztonodes is the (optional) nodes at the end
of the path.

Figure 5.24 \tikzset{hvh/.style={to path={
let \p{mid}=($(\tikztostart)!0.5!(\tikztotarget)$)
in -- (\tikztostart -| \p{mid})

-- (\p{mid} |- \tikztotarget)
-- (\tikztotarget) \tikztonodes}}

\begin{tikzpicture}
\draw[help lines] (0,0) grid +(3,2);
\draw[-open triangle 45] (0,0) to[hvh] (1,1);
\draw[-open triangle 45] (3,2) to[hvh] (1,0);
\end{tikzpicture}

Using the spy library.
Figure 5.25

0

36
72108

144

180

216
252 288

324

0

36
72108

144

180

216
252 288

324

\begin{tikzpicture}
[spy using outlines={circle,

magnification=2,
size=2cm,
connect spies}]

\draw (-36:0.8)
\foreach \angle in {0,36,...,359} {

-- (\angle:0.8)
(\angle:1.1) node {\angle}
(0,0) -- (\angle:0.8)

};
\spy[red] on (162:1.0) in node[right] at (0,-2.5);
\end{tikzpicture}

second is vertical, and the third is horizontal.

5.18 �e spy Library
�e spy library lets you magnify parts of diagrams. �ese magni�cations
are technically known as canvas transformations, which means they a�ect
everything, including line widths, font size, and so on.

To use the feature you need to add the option ‘spy scope’ to the
picture or scope you wish to spy upon. Some options implicitly add
this option. I’ve noticed problems with the spy feature and xelatex.
Fortunately it work �awlessly with pdflatex. Figure 5.25 provides an
example. �e spy library has quite a number of options. If you like
to spy on your tikzpictures then you may �nd more details in the
manual [Tantau, 2010].

5.19 Trees
Knowing how to de�ne node labels and knowing how to draw nodes
and basic shapes, we are ready to draw some more interesting objects.

Presenting Diagramswith tikz 109

Drawing a tree.
Figure 5.26

f4

f3

f2

f1 f0

f1

f2

f1 f0

\begin{tikzpicture}
[level 2/.style={sibling distance=10mm}]

\node {f_4}
child {node {f_3}

child {node {f_2}
child {node {f_1}}
child {node {f_0}}}

child {node {f_1}}}
child {node {f_2}

child {node {f_1}}
child {node {f_0}}};

\end{tikzpicture}

Using implicit node labels in
trees. To draw the arrow, the
label of the root node is used
to construct the labels of its
�rst and second child.

Figure 5.27

f3

f1 f2

f1 f0

\begin{tikzpicture}
\node (top) {f_3}

child {node {f_1}}
child {node {f_2}

child {node {f_1}}
child {node {f_0}}};

\draw[red,-angle 90]
(top-1.north east) .. controls (top.south)

.. (top-2.north west);
\end{tikzpicture}

We shall start with a class of objects which should be of interest to the
majority of computer scientists: trees.

Trees expose a common theme in tikz objects: hierarchical struc-
tures. A tree is de�ned by de�ning its root and the children of each node
in the tree. Each child is a node or a node with children. By default, the
children of each parent are drawn from le� to right in order of appear-
ance. Unfortunately, drawing trees with tikz isn’t perfect. �e ‘sibling
distance = 〈dimension〉’ option lets you control the sibling distance.
You can control these distances globally or for a �xed level. For example,
’level 2/.style = {sibling distance = 1cm}’ sets the distance for the
grandchildren of the root — they are at level 2 — to 1 cm. Figure 5.26
demonstrates how to draw a tree.

Inside trees you can use labels as usual. What is more, tikz implicitly
labels the nodes in the tree and lets you use these labels. �e i th child
of a parent with label 〈parent〉 is labelled 〈parent〉-i . �is process is
continued recursively, so the j th child of the i th child of the parent node
is labelled 〈parent〉-i- j . Figure 5.27 demonstrates the mechanism.

Changing the node style is a piece of cake. Figure 5.28 provides an
example which sets the styles of the second and third level to di�erent
defaults. �e option ‘level distance = 〈dimension〉’ sets the distance
between the levels in the tree.

110 Chapter 5

Controlling the node style.
Figure 5.28

f3

f1 f2

f1 f0

\begin{tikzpicture}
[level distance=10mm%
,every node/.style={fill=red!60%

circle,%
draw=black,%
inner sep=1pt}%

,level 1/.style={sibling distance=15mm},%
,level 2/.style={sibling distance=10mm,%

nodes={fill=red!20}}]
\node (top) {f_3}

child {node[fill=blue!40] {f_1}}
child {node[fill=blue!20] {f_2}

child {node {f_1}}
child {node {f_0}}};

\end{tikzpicture}

A tree with a ‘missing’ node.
�e node of the �rst child of
the root’s �rst child is le� out
using the node option miss-
ing.

Figure 5.29

0

1

2

3

4

\begin{tikzpicture}
[level 2/.style={sibling distance=10mm}]

\node (top) {0}
child {node {1}

child[missing]
child {node {2}}}

child {node {3}
child {node {4}}};

\draw[red,-angle 90]
(top-1-2.east) -- (top-2-1.west);

\end{tikzpicture}

As already noted, the rules for automatic node placement are not
always ideal. For example, sometimes you may wish to have the single
child of a given parent drawn to the le� or to the right of the parent.
�e child option missing allows you to specify a node which takes up
space but which is not drawn. By putting such a node to the le� of its
sibling, the position of the sibling is forced to the right. You may use this
mechanism to force node placement. Omitting a node makes its label
inaccessible. Figure 5.29 provides an example.

5.20 Logical Circuits
A logical circuit is a circuit whose building blocks are logic gates such as
and-gates, or-gates, xor-gates (exclusive or), not-gates, and so on. Need-
less to say that tikz lets you draw logical circuits with ease. �e style
of the symbols of the gates depends on libraries. Possible libraries are
circuits.logic.IEC, circuits.logic.CDH, and circuits.logic.US.
You may load these libraries with the command \usetikzlibrary com-
mand. Table 5.4 demonstrates the node shapes you get with the di�erent

Presenting Diagramswith tikz 111

Node shapes provided by
logic gate shape libraries.

Table 5.4 Appearance Appearance

Node Shape IEC CDH US Node Shape IEC CDH US

and gate & nand gate &

or gate ≥1 nor gate ≥1

xor gate =1 xnor gate =1

not gate 1 buffer gate 1

libraries. �e options which were used to draw the shapes are given
by ‘{circuit, logic 〈style〉,tiny circuit symbols,every circuit
symbol/.style={fill=white, draw}}’, where 〈style〉 is ‘IEC’, ‘CDH’, or
‘US’. In addition the option ‘logic gate IEC symbol color=black’ was
used in combination with ‘IEC’.

Figure 5.30 is the �rst example about drawing a logical circuit with
tikz. �ere are two new concepts in this example. �e �rst new concept
is the option ‘circuit declare symbol’ option, which is used to de�ne
names of new circuit symbols. �e second new concept is the option
‘set 〈symbol〉 graphic’ option, which is used to de�ne the appearance
of the circuit symbol 〈symbol〉. �e example uses these two options to
de�ne two new symbols called ‘connection’ and ‘io’. �e former is used
for drawing connections as black �lled circles. �e latter for drawing the
input and output nodes as circles. �e style of the remaining symbols
in this example determined by the ‘circuit logic CDH’ option. Notice
that this examples requires the tikz library circuits.logic.CDH. Finally,
note that if you’re drawing many circuits then you can use the \tikzset
command to de�ne the defaults for your circuits.

5.21 Installing tikz

�is temporary section describes how to obtain a recent tikz/pgf distri-
bution and install it.

�e easiest way to obtain a recent distribution is going to http:
//sourceforge.net/projects/pgf and saving a recent build. You install
the distribution as a normal LATEX package. �is is best done by installing
it locally in a dedicated directory called ${HOME}/${LaTeX}/${styles}/
(or equivalent) which hosts all your private LATEX style and class �les.
Section 15.3 describes how this is done.

http://sourceforge.net/projects/pgf
http://sourceforge.net/projects/pgf

112 Chapter 5

Drawing a half adder with
tikz.

Figure 5.30

A

B

S

C

\begin{tikzpicture}
[circuit logic CDH,
circuit declare symbol=connection,
circuit declare symbol=io,
set connection graphic={fill=black,

shape=circle,
minimum size=1mm},

set io graphic={draw,shape=circle,
minimum size=1mm},

every circuit symbol/.style={fill=white,draw}]
\draw node[xor gate] (x) {}

+(0,-1) node[and gate] (a) {}
(x.input 1) +(-0.8,0) node[io] (A) {}
(A |- a.input 2) node[io] (B) {}
(x.output) -- +(0.4,0) node[io] (S) {}
(a.output) -- (a.output -| S)

node[io] (C) {}
($(B)!0.33!(a.input 2)$) node[connection] {}

|- (x.input 2)
($(A)!0.66!(x.input 1)$) node[connection] {}

|- (a.input 1)
(A.west) node[anchor=east] {A}
(B.west) node[anchor=east] {B}
(S.east) node[anchor=west] {S}
(C.east) node[anchor=west] {C}
(A) -- (x.input 1)
(B) -- (a.input 2);

\end{tikzpicture}

Chapter 6
Presenting Data with Tables

This chapter studies how to present data using tables. Section 6.1
starts by explaining the purpose of tables. Section 6.2 continues by study-
ing the di�erent kinds of tables. Section 6.3 shows the components of
a table. Section 6.4 presents some guidelines about table design. Sec-
tion 6.5 explains LATEX’s table environment, which is usually used to
present tables. Multi-page tables are studied in Section 6.7. Section 6.8
concludes this chapter by providing some informations about packages
providing database and spreadsheet interfaces.

�e �rst part of this section is based on [Bigwood and Spore, 2003].
A LATEX view on presenting tables may be found in [Voß, 2008].

6.1 �e Purpose of Tables
Tables are a common way to communicate facts in newspapers, reports,
journals, theses, and so on. �ere are several advantages of using tables.

• Tables list numbers in systematic fashion.
• Tables supplement, simplify, explain, and condense written mate-

rial.
• Well-designed tables are easily understood.

– Patterns and exceptions can be made to stand out.
– �ey are more �exible than graphs. For example, in a graph

it may be di�cult to mix numeric information about data
in di�erent units such as the total consumption of petrol in
Ireland in tons in the years 1986–2008 year and the average
number of rainy days per year in the same country and the
same period of time.

6.2 Kinds of Tables
�ere are two kinds of tables: demonstration tables and presentation
tables. �e following explains the di�erence between the two.

Demonstration tables In demonstration tables �gures are organised to
show a trend or show a particular point. Examples are: (most)
tables in reports and tables (shown) in meetings.

113

114 Chapter 6

�is �gure shows the compo-
nents of a typical demonstra-
tion table. �e background
of the table is coloured grey.
�e black-on-white text to
the right of the table describes
the components of the table.

Figure 6.1
Table 3.1. GP and diabetic services, 2000

GP Practices
Towns Number Number providing % Providing

diabetic services diabetic services

Town A 40 38 95
Town B 29 27 93
Town C∗ 29 25 86
Town D 34 29 85
Town E 36 30 83
Town F 62 32 52
Total 230 181 82

Source: Health Authority annual Report, 2001

∗ Including Town E and Town F.

Number and Title

Column Headings

Row Headings

Source
Footnote

Reference tables Reference tables provide extra and comprehensive in-
formation. Examples are: train schedules and stock market list-
ings.

6.3 �e Anatomy of Tables
Figure 6.1 depicts a typical presentation table, which is based on [Big-
wood and Spore, 2003, Page 27]. �e table has several components.

Number and title In this example, the number and the title are listed
at the top of the table. You may also �nd them at the bottom. �e
title should describe the purpose of the table. �e table’s number
is used to refer to the table further on in the text. In addition it
helps you �nd the table when you are looking it up.

�ere are also two other styles of tables. In the �rst you will �nd a
separate legend, which is a description of what is in the table. In
the other style, which is the default in LATEX, tables have captions,
which are a combination of number, title, and legend. Good
captions should provide a number, a title, and a short explanation
of the data listed in the table.

If you include a table, you should always discuss it in the text.

• If the table is relevant, does have a message, but is not re-
ferred to in the text, then how are you going to draw your
reader’s attention to the table? A�er all, you would want
your reader to notice the table.

• If the table is not relevant to the running text, then why put
it in?

Presenting Datawith Tables 115

A poorly designed table.
Table 6.1 Chilled Meats Calories

Beef (4 oz/100 g) 225
Chicken (4 oz/100 g) 153

Ham (4 oz/100 g) 109
Liver sausage (1 oz/25 g) 75.023

Salami (1 oz/25 g) 125

• If you don’t discuss a table in the running text, then this may
confuse and irritate the reader as they may waste a lot of
time trying to �nd where this table is discussed in the text.

Column headings �e column headings are used to describe the data
in the table. In this example, there is a multi-column heading.
Horizontal lines separate the column headings from the number
and title and from the row heading of the table.

Row headings �e row headings are the meat of the table. �ey present
the facts, patterns, trend, and exceptions in terms of numbers, and
percentages.

Trend In this table the general pattern is presented in the last column.
Generally, in most towns more than 80% of the GPs provide dia-
betic services.

Exception In this table underlining is used to highlight an exception of
the general trend in the table. Other techniques for highlighting
exceptions are using a di�erent style of text (bold, italic, …). How-
ever, notice that using di�erent colours to highlight exceptions
may not always be a good choice. For example, the di�erence
may not be clear when the table is printed on a black-and-white
printer. In addition it may be di�cult to reproduce colours with
photocopying.

Source �e source describes the base document from which the table is
obtained or is based on.

Footnote �e footnote provides an additional comment about some of
the data.

6.4 Designing Tables
�is section provides some rules of thumb for the design of tables. To
start, consider Table 6.1, which is based on [Bigwood and Spore, 2003,
Page 18]. It should be clear that this is a very poorly designed table.
�ere are several things which are wrong with this table. �e following
are but a few.

• �e gridlines make it di�cult to scan the data in the table.

116 Chapter 6

• �e vertical alignment makes it di�cult to compare the numbers
in the table.

• �e numbers have di�erent widths. �is makes it di�cult to com-
pare them — even with proper vertical alignment.

• It is not clear what quantities of meat are compared in the last
column. �is makes it impossible to see the trend of calories per
unit of weight. It is possible to work this out from the data in
the �rst column, but this makes life more di�cult for the reader.
For example, for beef, chicken, and ham, the calories are listed for
4 oz/100 g units. For liver sausage and salami they are listed for
1 oz/25 g units. �is is a common error: the information is there
but it is poorly presented. As a result the table is useless.

• �e precision of the data in the last column is di�erent for di�er-
ent items. For example, for salami, it is listed with three decimals.
It is not clear why this is important and it only makes it more
di�cult to see the trend.

To improve the table we do the following.

• We reorder the information to the same unit: 100 g (4 oz). �is
allows us to simplify the �rst column. In addition it is now clear
what is listed in the last column.

• We reorder the rows to highlight the trend in the last column.
• We reduce the grid lines to a minimum. �is makes is easier to

scan the data.
• We present all numbers using the same precision and a similar

number of digits. It is now easier to compare the numbers.
• We align the items in the �rst column to the le�. �is now makes

it easier scan the items in the �rst column.
• We align the numbers to the right. �is now makes it easier to see

the relative di�erences of the data.
• We use non-proportional numbers. Most LATEX classes and styles

already give you non-proportional numbers. If they don’t then
they may provide a command to switch to a style with non-proportional
numbers. You can always get non-proportional numbers by using
the command \texttt.

• Optional: make the Column Headings stand out by typesetting
them in bold face.

�e result, which is listed as Table 6.2, is a much better table.
�e main rule of thumb in the design of tables is to keep them simple.

Less is more.

• Good tables are simple and uncluttered.

– �e number of vertical grid lines should be reduces to the
absolute minimum. �e advantage is that it makes it easier
to scan the data in the table.

Presenting Datawith Tables 117

An improved version of Ta-
ble 6.1.

Table 6.2 Chilled Meats Calories per
100 g (4 oz)

Salami 500
Liver sausage 300
Beef 225
Chicken 153
Ham 109

– Other gridlines should be kept to a minimum. Arguably,
gridlines should only be used to separate (1) the table from
the surrounding text, (2) the number and title, (3) the col-
umn headings, and (4) the row headings.

• Unless there is a good reason, you should align numbers and col-
umn headings to the right. �is results a more uniform appearance
which makes it easier to compare numbers.

• Good table titles should be concise, de�nitive, and comprehen-
sive. Where appropriate they should inform the reader about the
following.

What Table titles should describe the subject of table. For exam-
ple: Annual income.

Where If needed, they should describe the location of the data.

When If needed, they should describe the relevant time. �is
should be kept short: 2000, 1900–1940, May, ….

Units If units are used they should be described. Do not mix
units, e.g., kilograms and pounds, since this makes it dif-
�cult to compare. Instead convert them to the same unit
(preferably, International System of Units (si) units).

• Numbers should be aligned to facilitate comparison. For most
reference tables and all presentation tables:

– Numbers should be typeset in a monospaced font.
– Whole integral numbers should be aligned to the right.
– Decimal numbers should be aligned to the decimal point.
– Scaling should be considered if the relative size of the num-

bers varies much. If this is the case then you should consider
converting numbers to thousands, millions, and so on. Al-
ternatively, you should consider using scienti�c notation:
$1.4 10ˆ{+4}$ and $2.3 10ˆ{-3}$. Notice that the use of the
exponent may disrupt the normal inter-line spacing. Should
this be the case then you may also consider using \texttt
{1.4E +4} and \texttt{2.3E -3} or \texttt{1.4E\,+4}
and \texttt{2.3E\,-3}. If all signs of the exponent parts
are nonnegative then they may be omitted.

118 Chapter 6

Creating a table with the
booktabs package.

Figure 6.2 \begin{table}[tbp]
\begin{tabular}{ll}
\toprule

\textbf{Chilled Meats}
& \textbf{Calories per} \\
& \textbf{100\,g/4\,oz} \\

\midrule
…

\bottomrule
\end{tabular}
\caption[Calories of chilled meats.]

{Calories of chilled meats per weight. …
\label{tab:meat}}

\end{table}

• Reduce the amount of whitespace per line. �is makes it easier
to quickly scan the lines in the tables from le� to right. With
long lines and much whitespace this is much more di�cult. In
Table 6.2 the distance between the last letters in the �rst column
and the �rst numbers in the second column is relatively small.
Had we typeset the column heading of the second column on a
single line — as opposed to using two lines — the distance would
have been greater, leading to a less-quality table.

• For long tables, you should consider adding extra linespace at
regular intervals (for example a�er each fourth or ��h line).

6.5 �e table Environment

We’ve already seen how to present tabular information. �e table envi-
ronment creates a �oating table. As with the figure environment, this
puts the body of the environment in a numbered table, which may be
put on a di�erent place in the document than where it’s actually de�ned.
�e table placement is controlled with an optional argument. �is op-
tional argument works as with the optional argument of the figure
environment. (See Section 4.1 for further information about the op-
tional argument and how it a�ects the positioning of the resulting table.
Inside the table, \caption de�nes a caption, which also works as with
figure. It is recalled that moving arguments inside captions have to be
protected. �is is explained in Section 10.2.3. �e starred version of
the environment (table*) produces an unnumbered table, which is not
listed in the list of tables.

Figure 6.2 shows how to create a table, which assumes the booktabs
package is included.

Presenting Datawith Tables 119

6.6 Wide Tables

Sometimes tables may be too wide for the current page. Should this
happen the rotating package may come to rescue. �e package de�nes
a number of commands and environments which are used to implement
a sidewaystable environment, for presenting rotated tables. �e follow-
ing command typesets 〈stuff〉 in a rotated table.

\begin{sidewaystable}
〈stuff〉

\end{sidewaystable}

LATEX Usage

Inside 〈stuff〉, the command \caption works as usual. �e rotat-
ing package also de�nes a sidewaysfigure environment for �gures.

6.7 Multi-page Tables

�e longtable package de�nes an environment called longtable, which
has a similar functionality as the tabular environment. �e resulting
structures can be broken by LATEX’s page breaking mechanism.

Since a single longtable may require several page breaks, it may take
several runs before it is fully positioned. �e \caption command works
as usual inside the body of a longtable.

�e longtable package needs to know how to typeset the �rst col-
umn heading, subsequent column headings, what to put at the bottom
of the table on the last page, and what to put at the bottom of the �rst
pages. �is is done with the following commands.

\endfirsthead

�is indicates the end of the �rst column headings speci�cation. �e ma-
terial starting at the body of the longtable and ending at the command
\endfirsthead is used to typeset the �rst column headings.

\endhead

�is indicates the end of the speci�cation for remaining column head-
ings. All the material in between \endfirsthead and \endhead is used
to typeset the remaining column headings.

\endfoot

�is indicates the end of the speci�cation for remaining column head-
ings. All the material in between \endhead and \endfoot is used to
typeset the bottom of tables on the �rst pages.

\endlastfoot

�is indicates the end of the last foot speci�cation. All the material
between \endfoot and \endlatsfoot is used to typeset the bottom of
the table on the last page.

Figure 6.3 demonstrates how to use the longtable environment to
typeset a table about the nutritional values of chilled meats.

120 Chapter 6

Using the longtable package.
�e \newcommand command
at the top of the listing de-
�nes a user-de�ned command
called \boldmc which works
just as the \multiclumn com-
mand, except for the fact that
it typesets the text in a bold
face font. User-de�ned com-
mands are explained in Chap-
ter 10.

Figure 6.3 \newcommand{\boldmc}[3]{
\multicolumn{#1}{#2}{\textbf{#3}}%

}
\begin{longtable}{lr}

\toprule
\textbf{Meats}

& \boldmc{1}{l}{Calories per $100\,\mathrm{g}$}
\\\midrule

\endfirsthead
\toprule
\boldmc{2}{c}{\tablename˜\thetable\ Continued}

\\\midrule
\textbf{Meats}

& \boldmc{1}{l}{Calories per $100\,\mathrm{g}$}
\\\midrule

\endhead
\midrule
\boldmc{2}{l}{Continued on next page}

\\\bottomrule
\endfoot

\bottomrule
\endlastfoot

Salami & 500
\\Liver sausage & 300
...

\end{longtable}

6.8 Databases and Spreadsheets
�ere are several packages which let you create and query databases and
typeset the result as a table or tabular. Some of these packaged provide
additional functionality which lets you create barcharts, piecharts, and
so on. �e following are some of these packages.1

datatool �e datatool package [Talbot, 2007] is a very comprehensive
package. �e package lets you create databases, query them, and
modify them. Finally, the package lets you create pie and bar
charts or line graphs. Further information may be found in the
package documentation [Talbot, 2007].

pgfplotstable �e pgfplotstablepackage [Feuersänger, 2008], which
uses pgfkeys, lets you read in tab-separated data and typeset the
data as a tabular. �e package also supports a limited form of
queries. �e package lets you round numbers up to a speci�ed
precision.

1At the time of writing this section I haven’t had much time to play with these
packages. As a consequence the presentation may not be entirely accurate.

Presenting Datawith Tables 121

calctab �e calctab package [Giacomelli, 2009] lets you de�ne rows
in the table with commands. In addition it provides commands
which allow you accumulate sums of entries in given columns,
and so on. �e package documentation is not very long and uses
simple examples. Unfortunately the package does not seem to
have a facility to set the symbol for the decimal point.

spreadtab As the name suggests, the spreadtab package [Tellechea,
2010] is written with a spreadsheet in mind. �e user speci�es
a matrix of cells (the spreadsheet) in some form of tabular-like
environment. �e layout of the matrix determines the result and
cells can be rules for computing results from other cells. �e pack-
age provides a command for setting the symbol for the decimal
point.

If all you need is a simple way to compute sums/averages from rows and
columns then you should consider using the spreadtab package.

122 Chapter 6

Chapter 7
Presenting Data with Graphs

This chapter, which is still in its infancy, studies the presentation of
data with graphs with LATEX. �e presentation of this chapter is example
driven and mixes theory of presentation with practice. �e theory is
mostly based on [Bigwood and Spore, 2003]. With the exception of
pie charts, which are discouraged anyway, all graphs are created with
the recently released pgfplots package [Feuersänger, 2010], which cre-
ates astonishingly beautiful graphs in a consistent style with great ease.
�e remainder of this chapter covers pie charts, bar graphs, paired bar
charts, component bar graphs, line graphs, and scatter plots but (for the
moment?) it excludes 3-dimensional graphs.

7.1 �e Purpose of Graphs
A picture can say more than a thousand words. �is, to some extent,
epitomises graphs: good graphs tell a story which is easily recognised and
will stick. Graphs are good at showing global relationships, di�erences,
and change.

Global relationships Graphs are good at showing global relationships.
A 2-dimensional scatter plot, for example, may reveal that the data
are clustered, that the y-coordinates have a tendency to increase
as the x-coordinates increase, that most x-coordinates are smaller
than the y-coordinates, and so on.

Di�erences Graphs are good at showing the di�erence between two
or several functions/trends. For example, the di�erence between
the height of males in two countries as a function of their age,
the di�erence of the running time between four algorithms as a
function of the size of the input, and so on.

Change Graphs are also good at showing the rate of change within a sin-
gle function/trend. For example, the rate of change of the running
time of a single algorithm as the size of the input increases. Inter-
estingly, di�erences and change can o�en be shown e�ectively in
a single graph.

A well-designed graph sticks and conveys the essence of the relationship.

123

124 Chapter 7

A pie chart.
Figure 7.1 1%

1%
3%
5%

10%
15%
16%
24%
25%

Other income
Income of trust and designated funds
Publications and journals
Professional and clinical a�airs
Donations and legacies
Fellowship and membership subscriptions
Building appeal
Accommodation and conference facilities
Education and training

7.2 Pie Charts
Our �rst kind of graph is the pie chart. Pie charts have become very
fashionable. Programs such as excel have made creating pie charts rel-
atively easy. Figure 7.1 depicts a typical pie chart. �e information in
the pie chart is adapted from [Bigwood and Spore, 2003]. For sake of
this example, the percentages are listed as part of the legend information.
Even with this information it is di�cult to relate the segments in the
chart with the items in the legend.

�e relative size of each segment in the pie chart is equal to the
relevant size of the contribution of its “label”. To create the chart, the seg-
ments are ordered from small to large and presented counter-clockwise,
starting at 90◦. Colours are usually used to distinguish the segments.
Note that care should be taken when selecting colours as they may not
always print well.1 Hatch patterns are avoided as they are distractive.
�e pie chart in Figure 7.1 has 9 segments, which is too much: good
pie charts should have no more than 5 segments [Bigwood and Spore,
2003].

Note that without the percentages it is impossible to compare the
relative sizes/contributions of the two smaller segments, which happen
to have the same size. Likewise it is di�cult to compare the sizes of the
segments which contribute 15% and 16% of the total. Arguably, a table
is a better way to present the data. As a matter of fact, the legend already
is some form of table.

Pie charts are very popular, especially in “slick” presentations. �is
is surprising as it is well known that pie charts are not very suitable
for communicating data and that specialists avoid them [Bigwood and
Spore, 2003] (see also the discussion about pie charts in [Tantau, 2010]).
Bar graphs, which are studied in the following section, are almost always
more e�ective than pie charts. Despite these observations, pie charts

1Note that with careful planning you should be able to change the colours of the
segments depending on a global “mode” settings in your document. Speci�cally, this
should allow you to select di�erent, proper colours for an online version and a printable
version of your document. Techniques for changing colours and other setting which
depend on “modes” are studied further on in this book.

Presenting Datawith Graphs 125

are good at showing parts of a whole by percentages, and how a few
components may make up a whole [Bigwood and Spore, 2003].

Finally, the pie chart in Figure 7.1 was drawn using raw tikz com-
mands and drawing the chart took a long time. Nicola Talbot’s csvpie
provides some support for drawing pie charts but be aware of the argu-
ments against pie charts.

Using the axis environment.
Figure 7.2 \begin{tikzpicture}

\begin{axis}[width=8cm, height=6cm, tick align=outside]
\addplot[draw=blue]

coordinates {(0,1) (1,1) (2,3) (3,2) (4,2)};
\addlegendentry{Line 1}
\addplot[draw=red]

coordinates {(0,0) (1,4) (2,4) (3,3) (4,3)};
\addlegendentry{Line 2}

\end{axis}
\end{tikzpicture}

Output of the axis environ-
ment in Figure 7.2.

Figure 7.3

0 1 2 3 4

0

2

4 Line 1
Line 2

7.3 Introduction to pgfplots

�is section provides an introduction to drawing graphs with the pgf-
plots package which is built on top of pgf. �e pgfplots package lets
you draw graphs in a variety of formats. �e resulting graphs have a
consistent, professional look and feel. �e package also lets you import
data from matlab. As is usual with pgf family members, the pgfplots
manual is impressive.

�e workhorse of the pgfplots package is an environment called
axis, which may de�ne one or several plots (graphs). Each plot is draw
with the command \addplot. When the graphs are drawn the environ-
ment also draws a 2- or 3-dimensional axis. �e axis environment is
used inside a tikzpicture environment, so you can also use tikz com-
mands. Options of the axis environment allow you to specify the kind
of plot, width, height, and so on. Figure 7.2 demonstrates how to use
the command and Figure 7.3 depitcs the resulting output.

126 Chapter 7

As is hopefully clear from this example, the options of the axis
environment set the width to 8cm, set the height to 6cm, and force the
ticks to be on the outside of the axes.

For reasons of consistency, it is advisable to give the values of the
options for your axis environments the same value throughout your
document. For example, it is very likely that you have a default height
and width for your graphs. Ideally, you’d like to de�ne default values
for height and width and omit the height and width speci�cations in
the axis environment, except when overriding them. �is is where the
command \pgfplotsset comes into play. Basically, \pgfplotsset is to
pgfplots what \tikzset is to tikz: it lets you set the default values for
options of pgfplots commands and environments. �e following is an
example.
\pgfplotsset{compat=newest,enlargelimits=0.18,

width=6cm,height=4cm,enlargelimits=0.18}

LATEX Input

In this example, the command sets the default compatibility to
‘newest’, which is advised. �e default width is set to 6cm and the
default height is set to 4cm. �e spell ‘enlargelimits=0.18’ increases
the default size of the axes by 18%. As with tikz commands you may
override the values for these options by passing them to the optional
arguments of the axis environment and the \addplot command.

7.4 Bar Graphs
Our next graph is the bar graph. Bar graphs present quantities as rows
or columns. You can use bar graphs to show di�erences, rates of change,
and parts of a whole.

Figure 7.4 depicts a typical bar graph. As with rows in a table, the
bars of the graph are ordered to show the main trend. Notice that the
data in this graph could just as well have been presented with a table.
However, the main advantage of the bar graph presentation is that it
“sticks” better. For example, it is very clear from the shape of the bars
that Kilkenny, Cork, and Tipperary are the main all-Ireland hurling
champions. It is also clear these teams are much better than the rest.
With a table, the impact of the di�erence would not have been so big.
Also notice that even in the absence of the frequency information a�er
the bars, it is relatively easy to compare relative di�erences between the
bars.

It is also possible to have bar graphs with vertical bars. Such bar
graphs are sometimes used to present changes over time. For example, if
you use x-coordinates for the time, use y-coordinates for the quantities,
and order the bars by time from le� to right, then you can see the rate
of change of the quantities over time. Of course, you can also present
changes over time with horizontal bar graphs but some people �nd this
intuitively less pleasing.

�ere are at least two reasons why vertical bar graphs are not as

Presenting Datawith Graphs 127

ideal as horizontal bar graphs. First it makes it di�cult to label the
bars, especially if the text of the labels is long. For example, putting the
labels along the x-axis usually requires rotating the labels, which makes
it di�cult to read the labels. Second, you can put more bars in a graph
with horizontal bars.

All-Ireland hurling champi-
ons and the number of times
they’ve won the title before
2011.

Figure 7.4

0 5 10 15 20 25 30 35

Kerry
Laois

London
Waterford

Clare
O�aly

Galway
Wexford

Dublin
Limerick

Tipperary
Cork

Kilkenny

1
1
1

2
3

4
4

6
6

7
26

30
32

Frequency of Winning the Final

Creating a bar graph.
Figure 7.5 \begin{tikzpicture}

\begin{axis}
[xbar,width=11cm,height=8cm,bar width=10pt,enlargelimits=0.13,
nodes near coords,nodes near co-

ords align=horizontal,
point meta=x * 1, % The displayed number.
legend pos=south east,
xlabel=\textbf{Frequency of Winning the Final},
tick align=outside,
xtick={0,5,...,35}, ytick={1,...,13},
yticklabels={Kerry,Laois,London,Waterford,Clare,Offaly,Galway

Wexford,Dublin,Limerick,Tipperary,Cork,Kilkenny}]
\addplot[draw=blue, fill=blue!15] coordinates

{(1,1) (1,2) (1,3) (2,4) (3,5) (4,6) (4,7)
(6,8) (6,9) (7,10) (26,11) (30,12) (32,13)};

\end{axis}
\end{tikzpicture}

Figure 7.5 presents the input which was used to create the bar graph
in Figure 7.4. �e graph itself is typeset inside an axis environment
which itself is inside a tikzpicture environment. �e xbar option
of the axis environment speci�es that this is a horizontal bar graph.
�e data for the graph are provided by the \addplot command. �e
‘enlargelimits=0.13’ option is used to increase the size of the axes by
13%.

128 Chapter 7

�e xtick and ytickkeys are used to override the default positions of
the x and y ticks on the axes. For each xtick (ytick) position pgfplots
will place a little tick at the position on the x-axis (y-axis) and label the
tick with its position. �e tick labels can be overridden by providing
an explicit list. �is is done with the commands \xticklabels and
\yticklabels. �e input in Figure 7.5 uses the command \yticklabels
to override the labels for the y ticks. �e le�-to-right order of the labels
in the argument of \yticklabels is the same as the increasing order
of the y ticks in the bar plot. �e command \xticklabels works in a
similar way.

�e lengths of the bars are de�ned by the required argument of the
\addplot command. �e length of the bar with y-coordinate y is set to
x by adding the tuple ‘(x, y)’ to the list. For example, the tuple ‘(32,13)’
de�nes the length of the bar for Kilkenny.

�e bar graph in Figure 7.4 also lists the lengths of the bars. �ese
lengths are typeset with the keys ‘nodes near coords’, ‘nodes near co-
ords align’, and ‘point meta’. (By default the lengths of the bars are
not typeset.) �e ‘point meta’ key is used to de�ne the values which are
typeset near bars. Since we want to typeset the length of the bar, which is
de�ned by the x-coordinate in the coordinate list, we use ‘x * 1’. More
complex expressions are also allowed.

7.5 Paired Bar Graphs
Paired bar graphs are like bar graphs but they present information about
two groups of data. Figure 7.6 depicts an example of a paired bar graph.
In this graph there are two bars for each of the �ve experiments: one for
fc and one for mac. �e information in the graph is made up.

Before studying the LATEX input which was used to draw the paired
bar graph, it should be pointed out that pgfplots also lets you construct
similar graphs with more than two groups of data. Having pointed this
out, it should be noted out that such graphs should be discouraged as
the number of bars soon becomes prohibitive, making it di�cult to see
the trends.

Figure 7.7 shows the input which was used to create the horizontal
paired bar graph from Figure 7.6. As you can see from the input, a
horizontal paired graph is also created by passing xbar as an option to
the axis environment. �e rest of the input is also similar to the input we
needed to de�ne our horizontal bar graph. �e main di�erences are that
(1) we have two bar classes per y-coordinate and (2) we have a legend.
For each bar class there is an entry in the legend.

Each class of bars is de�ned by a separate call to \addplot. �e
command \addlegendentry adds an entry to the legend for the most
recently de�ned class. �e style of the legend entries is set with the
‘area legend’ option, which option results in a rectangle drawn in the
same way as the corresponding bar. �is is slightly nicer than the default
legend entry style.

Presenting Datawith Graphs 129

�e style of the legend is set with the legendstyle key. �e ‘legend
pos’ key is used to position the legend. �e spell ‘cells={anchor=west}’
aligns the labels of the legend to the le�.

Comparison of the execution
time of the Maintain Arc
Consistency (mac) and the
Forward Checking (fc) algo-
rithms for instances of 5 prob-
lem classes. Execution time in
seconds.

Figure 7.6

0 50 100 150 200

satis�able

unsatis�able

low density

high density

random

Execution Time

mac
fc

Creating a paired bar graph.
Figure 7.7 \begin{tikzpicture}

\begin{axis}
[xbar,enlargelimits=0.14,width=8cm,height=6cm,,
bar width=10pt,area legend,legend pos=south east,
legend style={legend pos=north east,

cells={anchor=west}},
tick align=outside,xlabel=\textbf{Execution Time},
ytick={1,...,5},
yticklabels={satisfiable,unsatisfiable,

low density,high density,random}]
\addplot[draw=blue,fill=blue!15]

coordinates {(5,1) (10,2) (25,3) (40,4) (80,5)};
\addlegendentry{\textsc{mac}}
\addplot[draw=blue,fill=blue!50]

coordinates {(5,1) (15,2) (15,3) (50,4) (200,5)};
\addlegendentry{\textsc{fc}}
\end{axis}
\end{tikzpicture}

7.6 Component Bar Graphs
Component bar graphs, also known as stacked bar graphs, allow you to
compare several classes of data. Each class consists of (the same) com-
ponents and within each class you can see the contribution of the com-
ponents to the class as a whole. Figure 7.8 depicts a component bar
graph.

Notice, again, that the bars are ordered to show the trend. For medal
rankings, the �rst criterion is the number of gold medals won. Ties are
broken by considering the number of silver medals, and so on. For other
data you may have to order your rows depending on the overall size of

130 Chapter 7

the bars.
For the medal ranking example, it is easy to compare the contribution

of the di�erent medals to the overall medal count of a given country.
Likewise, it is easy to compare the number of gold, silver, or bronze
medals won by di�erent countries. �e reason why this works is that all
sizes are small and discreet. For di�erent kinds of data, with large ranges
of data values, comparing the component sizes is usually not so easy.

Component graphs are usually not the right choice for communicat-
ing data, they easily distort data, and the information packed into them
is usually too much [Bigwood and Spore, 2003].

Tables may be an interesting and good alternative to component bar
graphs. For example, you can have a di�erent row heading for each com-
ponent in the component graph. If the total size of the bars is important
then you can introduce a separate row heading to present these data as
the “grand total”, or as the “total time”, and so on.

Figure 7.9 presents the input which was used to create the component
bar graph depicted in Figure 7.8. �e options ‘xbar stacked’ and ‘stack
plots=x’ indicate that the plot is a horizontal component bar graph.
Each \addplot command de�nes the contribution of the next horizontal
component for each y-tick position, so ‘(1,2)’ in the argument of the
�rst \addplot command states that the Netherlands (2) won one (1)
gold medal. Likewise ‘(0,3)’ in the argument of the second \addplot
command states that France won no silver medals.

7.7 Coordinate Systems
None of our previous pgfplots-drawn graphs required additional tikz
commands for additional lines or text. However, graphs with additional
text and lines are quite common. �e pgfplots package provides several
dedicate coordinate systems for correct positioning such additional text
and lines. �e following are some of these coordinate systems.

axis cs �is coordinate system is for “absolute coordinates”. Each co-
ordinate in this system has the same x and y coordinates as are
used to de�ne coordinates with the \addplot command. For ex-
ample, if you use the command ‘\addplot{(1,2) (3,4)}’ then the
command ‘\tikz \draw (axis cs:1,2) node {〈text〉};’ should
draw 〈text〉 at the �rst coordinate.

rel axis cs �is coordinate system uses coordinates from the unit
square and linearly transforms them to plot coordinates. In this
coordinate system the coordinates (0,0) and (1,1) are the lower
le� and the upper right corners of the unit square, so ‘\tikz \draw
(rel axis cs:0.5,.5) node {〈text〉};’ should draw 〈text〉 in
the centre of the plot.

xticklabel cs �is coordinate system is for coordinates along the x-
axis. Basically, the coordinate ‘xticklabel cs:x ’ is equivalent

Presenting Datawith Graphs 131

Top �ve countries of the
medal ranking of the
2009 World Judo Cham-
pionships in Rotterdam
(�e Netherlands). (Source
wikipedia.)

Figure 7.8

1 2 3 4 5 6 7

Russia

Netherlands

France

South Korea

Japan

Medals Won

Gold
Silver
Bronze

Creating a component bar
graph.

Figure 7.9 \begin{tikzpicture}
\begin{axis}

[xbar stacked, stack plots=x, tick align=outside,
width=8cm, height=6cm, bar width=10pt,
legend style={cells={anchor=west}}, area legend,
xlabel=\textbf{Medals Won}, ytick={1,...,5},
yticklabels={Russia,Netherlands,France,

South Korea,Japan}]
\addplot[draw=black,yellow!50!brown]

coordinates {(1,1) (1,2) (2,3) (2,4) (3,5)};
\addlegendentry{Gold}
\addplot[draw=black,white!60!gray]

coordinates {(1,1) (2,2) (0,3) (0,4) (1,5)};
\addlegendentry{Silver}
\addplot[draw=black,orange!70!gray]

coordinates {(1,1) (0,2) (1,3) (3,4) (3,5)};
\addlegendentry{Bronze}
\end{axis}
\end{tikzpicture}

to ‘rel axis cs:x,0’. So far, this is not very interesting. How-
ever, the coordinate system also lets you provide an additional
coordinate, which should be a length. When provided, the length
de�nes the distance of a shi� “away” from the labels on the x-axis.

yticklabel cs �is coordinate system is for coordinates along the y-
axis. It works similar to the ‘xticklabel cs’ coordinate system.

�e remaining sections provide examples which use some of these co-
ordinate systems. �e reader is referred to the pgfplots package docu-
mentation [Feuersänger, 2010] for further information.

132 Chapter 7

Monthly rainfall in millime-
tres for the year 2009. (Source
http://www.cso.ie.)

Figure 7.10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

20

40

60

80

100

120

140

160

180

200

220

240 Very Wet

Very Dry

Month

R
ai

nf
al

l

Belmullet
Birr
Cork Airport
Dublin Airport
Shannon Airport

7.8 Line Graphs

Line graphs are ideal for presenting di�erences between data sets and pre-
senting the rate of change within individual data sets. �ey are commonly
used to present data (observations) which are a function of (depend on)
a given parameter. For example, the running time of a given algorithm
as a function of the input size, the average height of males as a function
of their age, and so on.

Figure 7.10 depicts a typical line graph. �e legend in the top right
hand corner of the graph labels the line types in the graph. In general
legends should be avoided: if possible the lines should be directly la-
belled [Bigwood and Spore, 2003], which is to say that each label should
be near its line. �e main reasons for avoiding legends is that they dis-
tract and make it more di�cult to relate the lines and their labels. For
the graph in Figure 7.10 direct labelling is virtually impossible.

Figure 7.11 depicts the input which was used to create the line graph
in Figure 7.10. Most of this is pretty straightforward. �e command
‘\addplot+’ is used to de�ne the lines in the graph. �e extra plus in
the command results in extra marks on the lines for the coordinates in
the required argument of \addplot+. �e option ‘sharp plot’ of the
\addplot command states that consecutive points in the plot should be

http://www.cso.ie

Presenting Datawith Graphs 133

Creating a line graph.
Figure 7.11 \begin{tikzpicture}

\begin{axis}
[width=\textwidth, enlargelim-

its=0.13, tick align=outside,
legend style={cells={anchor=west},legend pos=north east},
xticklabels={Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec},
xtick={1,2,3,4,5,6,7,8,9,10,11,12},
xlabel=\textbf{Month}, ylabel=\textbf{Rainfall}]

\node[coordinate,pin=above:{Very Wet}]
at (axis cs:1,223.9) {};
\node[coordinate,pin=right:{Very Dry}]
at (axis cs:2,14.7) {};
\addplot+[sharp plot] coordinates

{(1,171.5) (2,116.4) (3,157.4) (4,67.7) (5,40.2) (6,127.6)
(7,44.3) (8,192.1) (9,112.4) (10,177.5) (11,136.2) (12,94.8)};

\addlegendentry{Belmullet}
\addplot+[sharp plot] coordinates

{(1,135.5) (2,30.8) (3,97.3) (4,28.6) (5,19.2) (6,90.2
(7,100.6) (8,171.6) (9,81.8) (10,121.0) (11,77.0) (12,63.7)};

\addlegendentry{Birr}
\addplot+[sharp plot] coordinates

{(1,195.1) (2,49.8) (3,113.5) (4,53.7) (5,75.6) (6,138.5
(7,148.1) (8,163.6) (9,123.8) (10,139.2) (11,79.4) (12,60.2)};

\addlegendentry{Cork Airport}
\addplot+[sharp plot] coordinates

{(1,96.9) (2,14.7) (3,102.4) (4,27.0) (5,32.7) (6,76.4
(7,111.5) (8,192.4) (9,111.8) (10,97.4) (11,39.6) (12,39.5)};

\addlegendentry{Dublin Airport}
\addplot+[sharp plot] coordinates

{(1,223.9) (2,58.0) (3,102.9) (4,49.2) (5,35.9) (6,110.8
(7,100.8) (8,176.6) (9,86.4) (10,156.4) (11,92.2) (12,75.1)};

\addlegendentry{Shannon Airport}
\end{axis}
\end{tikzpicture}

connected using a straight line segment. �is is more than likely what
you want when you’re crating line graphs. �e \node commands at the
end of the axis environment draw the texts ‘Very Wet’ and ‘Very Dry’
using the ‘axis cs’ coordinate system. �e node shape ‘pin’ is new but
it should be clear how it works.

Finally, notice that line graphs have a tendency to become crowded
as the number of lines increases. If this happens you should consider
reducing the number of lines in your graph. Alternatively, you may
consider using the spy feature to zoom in on the important crowded
areas in you graph. �e spy mechanism is explained in Section 5.18.

134 Chapter 7

7.9 Scatter Plots
Scatter plots are ideal for discovering relationships among a huge/large
set of 2-dimensional data points. Basically, the plot has a mark at each
coordinate for each data point. Figure 7.12 is a scatter plot which is used
to compare the running times of two algorithms for di�erent input. For
each input, i , the scatter plot has a point at position (xi , yi), where xi is
the running time of the �rst algorithm for input i and yi is the running
time of the second algorithm for input i .

Running time of Algorithm 1
versus running time of Algo-
rithm 2. Running times in sec-
onds. �e majority of the co-
ordinates are below the line
x = y .

Figure 7.12

0 20 40 60 80 100

0

20

40

60

80

100

Algorithm 1

A
lg

or
ith

m
2

Creating a scatter plot.
Figure 7.13 \begin{tikzpicture}

\begin{axis}
[width=\textwidth, tick align=outside,
xlabel=\textbf{Algorithm˜1},
ylabel=\textbf{Algorithm˜2}]

\addplot{scatter,only marks,mark=o,
draw=blue,scatter src=explicit}

file {data.dat};
\draw[dashed,red!40] (rel axis cs:0,0) --
(rel axis cs:1,1);
\end{axis}
\end{tikzpicture}

As you can see from the scatter plot, Algorithm 1 usually takes more
time than Algorithm 2 for random input. Furthermore, the overall shape
of the plot suggests that the running times are positively correlated. �e
dashed red line helps detecting both trends in the plot.

Presenting Datawith Graphs 135

�is table lists the values for
the mark option. �e options
at the top of the table are stan-
dard. �e remaining options
rely on the tikz library plot-
marks.

Table 7.1 Standard

mark=* mark=x

mark=+ mark=-

With \usetikzlibrary{plotmarks}

mark=| mark=o

mark=asterisk mark=star

mark=oplus mark=oplus*

mark=otimes mark=otimes*

mark=square mark=square*

mark=triangle mark=triangle*

mark=diamond mark=diamond*

mark=pentagon mark=pentagon*

Figure 7.13 presents the code which was used to create the scatter
plot in Figure 7.12. �e option ‘scatter’ states that the coordinates
provided by the calls to \addplot are for scatter plots. �e option ‘only
marks’ results in a mark which is drawn at each coordinate which is
speci�ed by \addplot. �e style of the mark may be set with the style
‘mark=〈mark style〉’. Possible values for 〈mark style〉 and the resulting
marks are listed in Table 7.1. In our example we’re using the style ‘o’
which results in a circle. �e option ‘color=〈colour〉’ sets the colour of
the mark.

�e option ‘scatter src=explicit symbolic’ states that the co-
ordinates are expected as explicit coordinates. Usually scatter plots
consist of many data points. Adding all point speci�cations to the
main LATEX source of your pgfplot environments surely doesn’t make
it easier to maintain the environments. �is is why pgfplots provides
support for including data from external source �les. In our example,
‘file {data.dat}’ indicates that the coordinates are in the external �le
data.dat. All lines in this �le are of the form ‘〈x-coordinate〉 〈y-
coordinate〉’.

�e red dashed line is drawn at the end of the axis environment.
�e ‘rel axis cs’ coordinate system is used to specify the start and
endpoint of the line. It is recalled from Section 7.7 that this coordinate
system scales all coordinates to the unit square with lower le� coordinate
(0,0) and upper right coordinate (1,1).

136 Chapter 7

Part IV

Mathematics and Algorithms

137

Chapter 8
Mathematics

This chapter is an introduction to typesetting basic mathematics
in LATEX. For further information the reader is referred to a proper
LATEX book such as [Lamport, 1994], a tutorial such as [Oetiker et al.,
2007], or a book on using LATEX for writing mathematics [Voß, 2009].
A comprehensive listing of LATEX symbols, including math symbols, is
provided by [Pakin, 2005].

LATEX’s basic support for mathematics is limited, which is why the
ams provide a package called amsmath which rede�nes some existing
commands and environments and provides additional commands and
environments for mathematical typesetting. �roughout this chapter it
is assumed that you have installed the amsmath package.

�e remainder of this chapter is as follows. Section 8.1 starts by de-
scribing theAMS-LATEX so�ware. Section 8.2 describes LATEX’s ordinary
and displayed math mode. Commands for typesetting expressions in
ordinary math mode are explained in Section 8.3. Subscripts and super-
scripts are explained in Section 8.4. Section 8.5 explains how to typeset
Greek letters. Environments for typesetting expressions in displayed
math mode are explained in Section 8.6. A command for typesetting
text inside math expressions is described in Section 8.7. Section 8.8 is ded-
icated to the task of typesetting delimiters. Commands for typesetting
fractions are presented in Section 8.9. Section 8.10 presents commands
for typesetting sums, products, and related constructs. Section 8.11 ex-
plains the AMS-LATEX’s commands for de�ning new operator symbols.
Section 8.12 continues by presenting commands for integration and dif-
ferentiation. Section 8.13 explains how to typeset roots. �is is followed
by Section 8.14 which is dedicated to arrays and matrices. Accents, hats,
and other decorations are covered in Section 8.15. Section 8.16 covers
overbraces and underbraces. Section 8.17 presents solutions for type-
setting case-based de�nitions. �e �ner details of typesetting function
de�nitions are explained in Section 8.18. Section 8.19 provides an intro-
duction to the amsmath commands for de�ning and uniform presentation
of theorem-like environments. Mathematical punctuation, spacing, and
line breaks are covered by Sections 8.20 and 8.21. Section 8.22 explains
how to change the type style in math mode. Section 8.23 concludes with
tables of useful symbols.

139

140 Chapter 8

8.1 �e AMS-LATEX Platform
AMS-LATEX is a useful platform for typesetting mathematics. �e so�-
ware is provided by the ams (http://ams.org/). �e so�ware is freely
available and should come with any good LATEX distribution. You can
download the ams so�ware and documentation from http://www.ams.
org/tex/amslatex.html.

�e so�ware distributed under the name AMS-LATEX consists of
various extensions for LATEX. �e distribution is divided into two parts:

amscls �e acmcls class provides the ams document class and theorem
package. Using this class gives your LATEX document the general
structure and appearance of an ams article or book.

amsmath An extension package providing facilities for writing math
formulas and to improving the typography.

�roughout this chapter AMS-LATEX and amsmath are used inter-
changeably. �e amsmath package is really a collection of packages. If
you include amsmath then you include them all. It lets you to con�gure
some of their basic settings. As usual this is done by passing options
inside the square brackets fo the \usepackage command: \usepackage
[options]{amsmath}. Some of the options for amsmath are as follows:

leqno Place equation numbers on the le�.

reqno Place equation numbers on the right.

fleqn Position equations at a �xed indent from the le� margin.

Some of the packages provided by AMS-LATEX are the following.
�e description of the packages has been adapted from the AMS-LATEX
documentation [American Mathematical Society, 2002].

amsmath De�nes extra environments for multiline displayed equations,
as well as a number of other enhancements for math (includes the
amstext, amsbsy, and amsopn packages).

amstext Provides a \text command for typesetting text inside a for-
mula.

amsopn Provides \DeclareMathOperator command for “operator names”
like \sin and \lim.

amsthm Provides a proof environment and extensions for the \newtheo-
rem command.

amscd Provides an environment for simple commutative diagrams.

amsfonts Provides extra fonts and symbols, including boldface (\mathbf),
blackboard boldface (\mathbb), and fractur (\mathfrac).

amssymb Provides lots of extra symbols.

http://ams.org/
http://www.ams.org/tex/amslatex.html
http://www.ams.org/tex/amslatex.html

Mathematics 141

8.2 LATEX’s Math Modes

LATEX has three basic modes which determine how it typesets its input.
�e basic modes are:

Text mode In this mode the output does not have mathematical content
and is typeset as text. Typesetting in text mode is explained in
Chapter 1.

Ordinary math mode In this mode the output has mathematical con-
tent and is typeset in the running text. Ordinary math mode is
more-commonly referred to as inline math mode.

Display math mode In this mode the output has mathematical content
and is typeset in a display.

�e mechanism for typesetting mathematics in ordinary (inline) math
mode is explained in the following section. �is is followed by some
sections explaining some basic math mode typesetting commands, which
are then used in Section 8.6. �e main purpose of Section 8.6 is to
describe some environments for typesetting displayed math.

8.3 Ordinary Math Mode

�is section explains how to typeset mathematics in ordinary (inline)
math mode. It is recalled from the previous section that this means that
the resulting math is typeset in the running text. Typesetting in displayed
math mode is postponed until Section 8.6. �e ‘$’ operator switches
from text mode to ordinary math mode and back, so ‘$a = b$’ results in
‘a = b ’ in the running text. �e following provides another example. If
you don’t understand the constructs inside the ‘$ · $’ expressions then
don’t worry: they are explained further on.
The Binomial Theorem states that
$\sumˆ{n}_{i=0} \binom{n}{i} aˆ{i} bˆ{n-i} = (a + b)ˆ

{n}$.
Substituting 1 for a and 1 for b this gives us
$\sumˆ{n}_{i=0} \binom{n}{i} = 2ˆ{n}$.

LATEX Input

�e following is the resulting output. �e mathematical expressions
in the output are typeset in the running text. �is should not come as a
surprise since $ · $ is for typesetting in ordinary (inline) math mode.

�e Binomial �eorem states that
∑n

i=0

�n
i

�

a i b n−i =
(a+ b)n . Substituting 1 for a and 1 for b this gives us
∑n

i=0

�n
i

�

= 2n .

LATEX Output

142 Chapter 8

8.4 Subscripts and Superscripts
Subscripts and superscripts are �rst-class citizens in mathematics. We’ve
already seen subscripts and superscripts in some of the examples. �is
section formally explains how to use them.

�e superscript operator (ˆ) is for creating superscripts. �e expres-
sion ‘$〈expr〉ˆ〈sup〉$’ makes 〈sup〉 a superscript of 〈expr〉. So ‘$e = m
cˆ2$’ gives you ‘e = mc2’. Grouping works as usual. So to typeset ‘ea+b ’
you need braces: ‘$eˆ{a+b}$’.

Subscripts are handled in a similar to superscripts. �e subscript
operator (_) is for creating subscripts. �e expression ‘$〈expr〉_〈sub〉$’
makes 〈sub〉 a subscript of 〈expr〉. So to get ‘ fn+2 = fn+1+ fn ’ you need
‘$f_{n + 2} = f_{n + 1} + f_n$’.

Subscripts and superscripts may be nested and combined. �e expres-
sions ‘$〈expr〉_〈sub〉ˆ〈sup〉$’ and ‘$〈expr〉ˆ〈sup〉_〈sub〉$’ are equivalent
and make 〈sub〉 a subscript of 〈expr〉 and 〈sup〉 a superscript of 〈expr〉,
so ‘$sˆ{m + 1}_{n+2}$’ gives you ‘s m+1

n+2 ’.
It is good practice to avoid su∗su∗scripts and su∗su∗su∗scripts as

much as possible — some style and class �les may reject them. �e
following are some advantages.

Simplicity �e fewer the su∗scripts, the simpler the notation, the greater
the transparency.

Readability �e resulting expression is easier to parse.

Spacing Avoiding nested subscripts and superscipts reduces the number
of inconsistencies in interline spacing.

8.5 Greek Letters
�is section describes the commands for Greek letters in math mode.
�ese commands do not work in text mode.

�ere are three classes of lowercase letters. �e following are the
classes and the commands to typeset the letters in the classes.

Regular �ese are the regular lowercase Greek letters. �e commands
for typesetting these letters are \alpha (α), \beta (β), \gamma
(γ), ….

Italic �ere are also some commands for italic lowercase Greek letters.
�ese commands all start with \var: \varepsilon (ε), \vartheta
(ϑ), \varrho (%), …. �ese commands are provided by amsmath.

Dunno Finally there is the AMS-LATEX-provided command \digamma,
which gives you b .

�ere are also commands for uppercase Greek letters. Commands
are only provided for letters which are di�erent from the uppercase
Roman letters. For example, there is no need for uppercase letters A, B ,
E , and so on. �ere are two classes of letters:

Mathematics 143

�is table lists the math mode
commands for lowercase
Greek letters. �e commands
at the top of the table are
standard LATEX commands.
�e command \digamma
and the commands starting
with \var are provided by
AMS-LATEX.

Table 8.1 Standard commands

α \alpha ι \iota τ \tau
β \beta κ \kappa υ \upsilon
γ \gamma λ \lambda φ \phi
δ \delta µ \mu χ \chi
ε \epsilon ν \nu ρ \rho
ζ \zeta ξ \xi ψ \psi
η \eta ø \o σ \sigma
θ \theta π \pi ω \omega

AMS-LATEX provided commands

ε \varepsilon c \varkappa % \varrho
ϕ \varphi ϑ \vartheta $ \varpi
ς \varsigma

b \digamma

�is table lists the math mode
commands for uppercase
Greek letters. �e commands
at the top of the table are
standard LATEX commands.
�e commands starting
with \var are provided by
amsmath.

Table 8.2 Standard commands

Γ \Gamma Ξ \Xi Φ \Phi
∆ \Delta Π \Pi Ψ \Psi
Θ \Theta Σ \Sigma Ω \Omega
Λ \Lambda Υ \Upsilon

AMS-LATEX provided commands

Γ \varGamma Ξ \varXi Φ \varPhi
∆ \varDelta Π \varPi Ψ \varPsi
Θ \varTheta Σ \varSigma Ω \varOmega
Λ \varLambda Υ \varUpsilon

Regular \Gamma (Γ), \Delta (∆), \Theta (Θ), …. �ese commands are
standard LATEX.

Italic \varGamma (Γ), \varDelta (∆), \varTheta (Θ), …. �ese non-
standard commands are provided by AMS-LATEX.

Table 8.1 lists the commands for the lowercase and Table 8.2 lists the
commands for the uppercase Greek letters.

8.6 Displayed Math Mode
�is entire section is dedicated to displayed math material. Standard
LATEX provides a few commands for displayed math. �e amsmath pack-
age rede�nes some of them and provides several extensions. As usual
unstarred versions of the environments are numbered in the text. Starred
versions are not numbered.

144 Chapter 8

Some environments allow vertical alignment in multi-line expres-
sions. In such environments linebreaks and vertical alignment are speci-
�ed as follows.

• Vertical alignment positions are speci�ed with &.
• Line breaks are speci�ed with \\.

�e unstarred versions of the environment produce labels: equation,
align, …. �e starred versions of the environment do not produce labels:
equation*, align*, ….

As a note of advice, you should avoid the unstarred versions if there
are no references to the equations in the text. If you decide otherwise,
the following may happen. A reader may notice an equation’s label. �ey
may start looking for the text that refers to the label. (�ey’re trying
to �nd additional information.) �ey may not be able to �nd the text
location. (A�er several attempts!) �ey may get confused and irritated.
If the reader is a referree this may be the �nal drop which was needed
for them to reject your paper.

�e remainder of this section consists of examples of some of ams-
math’s displayed equation environments. All examples use the unstarred
versions.

8.6.1 �e equation Environment

�e equation environment is for typesetting a single numbered displayed
equation. It is one of the more important environments for typesetting
displayed math material.

�e following demonstrates how to use the environment. �e ex-
ample uses a few new commands which are explained in more detail
further on. A short description of the commands is as follows. �e \sum
command is for typesetting sums. �e subscript (_) and superscript (ˆ)
commands are used to specify the lower and upper limits of the index
variable in the summand. �e command \sum is explained in detail in
Section 8.10. �e command \binom is for typesetting binomial coe�-
cients. �e thin space command (\,) is used to generate a thin space just
before the period in the display.
The following is Newton’s Binomial Theorem:
\begin{equation}

\label{eq:Newton}
\sumˆ{n}_{i=0}\binom{n}{i}aˆ{i}bˆ{n-i}=(a+b)ˆ{n}\,.

\end{equation}
Substituting 1 for˜a and for˜b in˜(\ref{eq:Newton})
gives us $\sumˆ{n}_{i=0} \binom{n}{i} = 2ˆ{n}$.

LATEX Input

�e following is the resulting output. Notice that the display makes
the equation stand out clearly from the surrounding text. �is is the
main purpose of the display.

Mathematics 145

�e following is Newton’s Binomial �eorem:

n
∑

i=0

�n

i

�

a i b n−i = (a+ b)n . (8.1)

Substituting 1 for a and for b in (8.1) gives us
∑n

i=0

�n
i

�

= 2n .

LATEX Output

Also notice that the equation in the output is automatically num-
bered and that the labelling and referencing mechanism in the input is
standard:

• You may de�ne a label for the number of the equation with the
\label command.

• Once the label is de�ned, you get the number of the equation
by applying the \ref command to the label. In the previous ex-
ample we put the equation number inside parentheses: ‘(\ref{
eq:Newton})’. �is is a common way of referring to equations. Ar-
guably it is better to use the prettyref package when typesetting
references. �is is explained in Section 1.5.

�ere is also a starred version (equation*) of the equation envi-
ronment. As is the default this results in an unnumbered version of its
unstarred equivalent. LATEX also has a di�erent mechanism for type-
setting a single unnumbered equation. �e command \[starts such
equations and the command \] ends them.

8.6.2 �e split Environment
�e split environment is for splitting a single equation into several
lines. �e environment allows you to align the resulting equation. �e
environment cannot be used at the top level and can only be used as
part of (some of the) other amsmath environments such as equation and
gather. �e split environment does not number the resulting equation.
�e following shows how to use the environment.
\begin{equation}
\begin{split}

a & = b + c + d \\
& \qquad + f + g + h \\
& > 0\,.

\end{split}
\end{equation}

LATEX Input

�e following is the resulting output. As you can see from the input
and the resulting output, the position of the vertical alignment is indi-
cated using the alignment operator (&) in the input and linebreaks are
forced with the newline operator (\\). �is is the default mechanism
for specifying vertical alignment and linebreaks. �e vertical alignment
position is just to the le� of the equality symbol. �is is why the line
starting with a plus is indented a bit. �is is done with the command

146 Chapter 8

\qquad, which generates a horizontal space which is roughly equivalent
to twice the width of the uppercase letter M. Section 8.21.1 provides
more information about how to use the command \qquad.

a = b + c + d
+ f + g + h

> 0 .
(8.2)

LATEX Output

As mentioned before, split does not number its output. �is ex-
plains why there is no starred version of split. In the output of the
previous example, the numbering of the equation is a controlled by the
equation environment, which numbers the output which is created by
split.

8.6.3 �e multline Environment
�e multline environment is for displaying a single equation over multi-
ple lines. �e environment does not allow control with vertical alignment.
�e resulting output gets only one number. �ere is also a starred version
of the multline environment.

�e lines are typeset as follows:

First line �e �rst line is aligned to the le�.

Last line �e last line is aligned to the right.

Middle lines �e remaining lines are aligned to the centre. However,
the \shoveleft command may be applied to more these lines
to the le�. �e command can only be used inside the multline
environment. Likewise, the command \shoveright can be used
to force lines to the right.

�e reader is referred to the amsmath documentation [American
Mathematical Society, 2002] for further information. �e following
demonstrates how to use the environment.
\begin{multline}

a = b + c + d \\
+ f + g + h \\
\shoveleft {+ k + l + m} \\
+ n + o + p\,.

\end{multline}

LATEX Input

�e output looks like this:

a = b + c + d
+ f + g + h

+ k + l +m
+ n+ o+ p . (8.3)

LATEX Output

Mathematics 147

8.6.4 �e gather Environment
�e gather environment is for displaying a group of consecutive equa-
tions without vertical alignment. All resulting equations are numbered
and centred. �e environment also has a starred version.

�e following example demonstrates how to use the environment.
\begin{gather}

a = b\,, \\
\begin{split}

a & = m + n + o \\
& \qquad + x + y + z \,.

\end{split}
\end{gather}

LATEX Input

�e following is the resulting output. Again notice that the equation
which is constructed using the split environment occupies two lines in
the resulting output but only receives one number.

a = b , (8.4)
a = m+ n+ o

+ x + y + z .
(8.5)

LATEX Output

8.6.5 �e align Environment
�e align environment is for equation groups with mutual vertical
alignment. Each row is numbered separately. �e command \nonumber
turns o� the numbering of the current equation.

�ere is also a starred version of the align environment. �e fol-
lowing shows how to use the unstarred version of the environment. In
this example the command \infty is for typesetting the in�nity symbol
(∞).
\begin{align}

\label{eq:one}
F & = \sumˆ\infty_{n=0} f_n zˆn \\
\label{eq:two}

& = z + \sumˆ\infty_{n=2}(f_{n-1}+f_{n-2}) zˆn \\
\label{eq:three}

& = z + F/z + F/zˆ2 \\
\nonumber

& = z / (1 - z - zˆ2) \,.
\end{align}
Here the last equation is obtained from˜(\ref{eq:one}),
(\ref{eq:two}), and˜(\ref{eq:three}) by transitivity
of equality and by solving for˜F.

LATEX Input

�e following is the resulting output. Notice that the \nonumber
in the input suppresses the number of the corresponding equation/row

148 Chapter 8

in the output. �e labels of the remaining three equations are de�ned
as usual and are used in the text following the display to refer to the
numbered equations.

F =
∞
∑

n=0

fn zn (8.6)

= z +
∞
∑

n=2

(fn−1+ fn−2)z
n (8.7)

= z + F /z + F /z2 (8.8)
= z/(1− z − z2) .

Here the last equation is obtained from (8.6), (8.7),
and (8.8) by transitivity of equality and by solving for F .

LATEX Output

�e align environment also allows you to have more than one col-
umn. �e following shows how this is done.

\begin{align}
a_0 & = b_0\,, & b_0 & = c_0\,, & c_0 & = d_0\,,\\
a_1 & = b_1\,, & b_1 & = c_1\,, & c_1 & = d_1\,,\\
a_2 & = b_2\,, & b_2 & = c_2\,, & c_2 & = d_2\,.

\end{align}

LATEX Input

�e following is the resulting output.

a0 = b0 , b0 = c0 , c0 = d0 , (8.9)
a1 = b1 , b1 = c1 , c1 = d1 , (8.10)
a2 = b2 , b2 = c2 , c2 = d2 . (8.11)

LATEX Output

8.6.6 Intermezzo: Increasing Productivity

Uniformity in the formatting of the input makes it easier to relate the in-
put and the output. In addition it helps spotting inconsistencies thereby
reducing the possibility of errors in the input. Finally, it helps with de-
bugging. For example, when you’re creating complex output using the
align environment it is a good idea to have one (or a few) number of
aligned items per line. If you get an error in the input then you can
easily comment out the equations, one at a time, until the error is gone,
which should tell you there is something wrong in the vicinity of the
last commented line in the input. If you de�ne multiple equations on
a single input line then �nding the error may pose more problems. By
treating LATEX as a regular programming language you increase your
productivity.

Mathematics 149

�e \shortintertext com-
mand.

Figure 8.1
\begin{align*}

x_0 & = 0\,, \\
x_1 & = 1\,, \\

\shortintertext{and}
x_2 & = 2\,.

\end{align*}

x0 = 0 ,
x1 = 1 ,

and
x2 = 2 .

�e aligned environment.
Figure 8.2 \begin{equation*}

I = \left[
\begin{aligned}

1 && 0 && 0 \\
0 && 1 && 0 \\
0 && 0 && 1

\end{aligned}
\right]\,.

\end{equation*}

I =









1 0 0
0 1 0
0 0 1









.

8.6.7 Interrupting a Display

�e amsmath package also provides a command called \intertext for a
short interjection of one or lines in the middle of a multi-line display.
�e command \shortintertext, which is provided by the mathtools
package, has a similar purpose but it takes less space. Figure 8.1 shows
how you use it. (�e command \intertext works in a similar way.)
Notice that the equation symbols of all resulting equations are properly
aligned.

8.6.8 Low-level Alignment Building Blocks

All alignment environments we’ve seen so far operate at the “line” level.
�is means you cannot use them as parts of other constructs. �e envi-
ronments aligned, alignedat, and gathered allow you to align things at
a lower level. Figure 8.2 provides an example of how to use the aligned
environment. Notice that the environment does not do any number-
ing: the numbering is controlled by the enclosing environment. In the
input in Figure 8.2 the commands \left and \right scale the le� and
right square brackets which act as delimiters of the construct which
is built using aligned. �e commands \left and \right are properly
explained in Section 8.8.1. �e example in Figure 8.2 should not be
used as a general idiom for typesetting matrices. Better ways to type-
set matrices are explained in Section 8.14. More information about
the other low-level alignment commands may be found in the amsmath
documentation [American Mathematical Society, 2002].

150 Chapter 8

8.6.9 �e eqnarray Environment
Standard LATEX also has an eqnarray environment. �is environment is
traditionally used for typesetting multiple equations with vertical align-
ment. �e output which you get from this environment it is not always
satisfactory. TEXperts strongly recommend that you use the amsmath
alignment primitives instead.

8.7 Text in Formulae
Every now and then you need plain text in mathematical formulae. �e
amsmath package provides a command \text which lets you do this.
Using it, as is demonstrated by the following example, is easy.
\[\text{final}

= \text{mark for assignments} \times
+ 5 \times \text{mark for literature review}

\,. \]

LATEX Input

�is gives you:

�nal=marks for assignments+5×mark for literature review .

LATEX Output

Inside the argument of the \text command you can safely switch
to ordinary math mode and back. �is also allows you to have a \text
command inside the argument of a \text command. �is makes writ-
ing $\text{f f f}$ perfectly valid (but not particularly
meaningful).

8.8 Delimiters
�is sections studies delimiters, which occur naturally in mathematical
expressions. For example, the opening and closing parentheses act as
delimiters of the start and end of the argument list of a function: f (a),
g (x, y), and so on. Likewise, the symbol ‘|’ is used as a le� and right
delimiter in the commonly used notation, |·|, for absolute values. De-
spite the importance of delimiters, LATEX is not always unaware of their
purpose and rôle in expressions. As a result it may sometimes use the
wrong size and spacing in expressions with delimiters.

�e remainder of this section helps you typeset your delimiters in
the right size and with the correct spacing relative to the rest of your
expressions. Section 8.8.1 starts by describing the commands \left
and \right, which are used for scaling delimiters. �is is followed by
Section 8.8.2, which describes how to typeset bar-shaped delimiters
depending on their context. Section 8.8.3 shows the proper commands
for typesetting tuples. Section 8.8.4 does the same for �oor and ceiling
expressions. �e section concludes with Section 8.8.5, which provides a
list of frequently used variable-size delimiter commands.

Mathematics 151

8.8.1 Scaling Le� and Right Delimiters

We’ve already seen the commands \left and \right as part of an exam-
ple, but this section properly describes the purpose of these commands.
�e main purpose of the commands \left and \right is to typeset
variable-sized delimiters in the proper size.

To understand why we sometimes need to scale delimiters, consider
the (arti�cial) LATEX expression $f(2ˆ{2ˆ{2ˆ2}}_{2_{2_2}})$. If
we typeset it using LATEX this gives us f (2222

222
). �e resulting output is

not very pretty since the parentheses, which act as delimiters of the
arguments of f (·), are too small. LATEX is simply not aware that the
parentheses are serving as delimiters. To tell LATEX that the parentheses
are le� and right delimiters we make their purpose explicit by tagging
them with \left and \right. �is is done as follows: $f\left(2ˆ{2ˆ

{2ˆ2}}_{2_{2_2}} \right)$, which gives us f
�

2222

222

�

. You can use this

technique for any kind of variable-sized delimiter symbol. Section 8.8.5
presents the di�erent kinds of variable-sized delimiters.

You cannot use \left without \right and vice versa, which some-
times poses a problem. For example, how to typeset the following?

n!=
¨

1 if n ≤ 1 ,
n× (n− 1)! otherwise .

LATEX Output

�e following is the solution. In the solution we use a \right. which
balances the \left-\right pair and produces nothing. �e construct
\left. may be used similarly.
\[n! =
\left\{

\begin{aligned}
& 1 && \text{if $n \leq 1$}\,, \\
& n \times (n-1)! && \text{otherwise}\,.

\end{aligned}
\right. \]

LATEX Input

Notice that the \{ in \left\{ in the input is not the le� brace for
starting a group, but the command for typesetting the le� brace. �e
cases environment provides an easier way to de�ne case-based de�ni-
tions. �e enviornment is explained in Section 8.17, which also discusses
other solutions to case-based de�nitions.

Unfortunately you cannot have newlines in combination with \left
and \right. �e solution is to use the \vphantom command.
\begin{align*}
f & = g\left(3ˆ{3ˆ{3}} + …\right.\\

& \qquad \left.+ 3 \vphantom{3ˆ{3ˆ{3}} + …}\right)\,.
\end{align*}

LATEX Input

If you use this you should get the following:

152 Chapter 8

f = g
�

333
+…

+3
�

.

LATEX Output

8.8.2 Bars
AMS-LATEX provides several commands for typesetting vertical bars
(|). �e reason for having several commands is that LATEX’s command
\vert sometimes acts as a le�, sometimes acts as a right delimiter, and
sometimes acts as a di�erent kind of delimiter. Depending on the rôle
of the delimiter symbol it has to be treated di�erently, which is why
AMS-LATEX provides dedicated commands which make the rôle of the
delimiters explicit.

In the remainder of this section we shall �rst study the standard
command \vert and then the special-purpose commands which are
provided by AMS-LATEX. �e following demonstrates how to typeset
the vertical bar which occurs in “guarded” sets.1

The even digits are
$\{\, 2 i \,\vert\, 0 \leq i \leq 4 \,\}$.

LATEX Input

�e following is the resulting output.
�e even digits are {2i |0≤ i ≤ 4}. LATEX Output

Using the thin spaces before and a�er the vertical bar is slightly
better than omitting them. It may be argued that the use of a colon
in guarded set notations is better than the use of a bar. For example,
{ |i | | − 10≤ i ≤ 9} is much more di�cult to parse than { |i | : −10≤ i ≤ 9}.

�ere are two more command-pairs for typesetting variable-size bars.
$\left\lvert x \right\rvert$

�ese commands are for absolute-values and similar: |x|.
$\left\lVert x \right\rVert$

�ese commands are for norms: ‖x‖.
�e \rvert command is also used for the “evaluation at” notation.

\[\left. f(x) \right\rvert_{x=0} = 0\,. \] LATEX Input

�e following is the resulting output. Notice that the ‘\left.’ bal-
ances the \left-\right pair.

f (x)|x=0 = 0 .
LATEX Output

8.8.3 Tuples
A common error in computer science and mathematical papers is to use
‘$<1,2,3>$’ for the tuple/sequence consisting of 1, then 2, and then 3.

1�e adjective ‘guarded’ for sets is inspired by guarded lists in the Haskell pro-
gramming language [Peyton Jones and Hughes, 1999].

Mathematics 153

�is kind of LATEX input gives you ‘< 1,2,3>’, which looks so bad that
some authors have complained about this (see for example [Aslaksen,
1993]). LATEX has a special \langle and \rangle for tuples. If you use
them for tuples then the result will look much more aesthetically pleasing.
�e following provides an example.
Let $F(z)$ be the ordinary generating func-
tion of the sequence
$\left\langle t_0,t_1,\ldots \right\rangle$, then $z F(z)$
is the ordinary generating function of the sequence
$\left\langle 0,t_0,t_1,\ldots \right\rangle$.

LATEX Input

�e following is the resulting output.
Let F (z) be the ordinary generating function of the se-
quence 〈t0, t1, . . .〉, then zF (z) is the ordinary generating
function of the sequence 〈0, t0, t1, . . .〉.

LATEX Output

8.8.4 Floors and Ceilings
�e commands \lfloor and \rfloor are for typesetting “�oor” expres-
sions which are used to express rounding down. �e two related com-
mands \lceil and \rceil are for typesetting “ceiling” expressions. �ey
are for rounding up. �e following provides an example.
Let x be any real. By definition
$i \leq \left\lfloor x \right\rfloor

\leq x
\leq \left\lceil x \right\rceil
\leq I$

for all integers i and I such that $i \leq x \leq I$.

LATEX Input

�e output looks like this.
Let x be any real. By de�nition i ≤ bxc ≤ x ≤ dxe ≤
I for all integers i and I such that i ≤ x ≤ I .

LATEX Output

8.8.5 Delimiter Commands
�is section presents some more commands for variable-sized delim-
iters. Table 8.3 lists the commands. �is table is based on [Pakin, 2005,
Tables 74 and 76].

8.9 Fractions
�is section is about typesetting fractions in math mode. Ordinary
fractions are typeset using the command \frac. To get the fraction 〈num〉

〈den〉
you use \frac{〈num〉}{〈den〉}. Notice that fractions in the running text
may disturb the �ow of reading because they may increase the interline
spacing. When using the \frac command in inline math mode you
should ensure that the resulting interline spacing is acceptable. If it is not

154 Chapter 8

�is table lists variable-
size delimiters and the
commands to typeset them.
All delimiters are typeset
in inline math mode. �e
delimiters listed under
the heading ‘Standard’ are
standard LATEX-provided
commands. �e delimiters
listed under the heading
‘amsmath’ are provided by
AMS-LATEX. All commands
can be used with or without
\left and \right.

Table 8.3 Standard

{ \{ } \} 〈 \langle
d \lceil b \lfloor 〉 \rangle
e \rceil c \rfloor ↑ \uparrow
⇓ \Downarrow l \updownarrow ↓ \downarrow
⇑ \Uparrow m \Updownarrow ((
[[| |))
]] ‖ \| / /
\ \backslash

amsmath

| \lvert | \rvert
‖ \lVert ‖ \rVert

then perhaps it is possible to eliminate the division from your fractions.
For example, a simple equation of the form x = 1

3 y is equivalent to
3x = y . If you can’t eliminate division then perhaps you can turn the
\frac construct into a simple $〈num〉/〈den〉$ construct. Alternatively,
you can typeset the fraction in a display.

�e amsmath package provides a specialised command \cfrac for
typesetting continued fractions. �e command takes an optional argu-
ment for the placement of the numerator. �e value of this optional
argument may be either ‘l’ for le� placement or ‘r’ for right placement:
you may write \cfrac[l]{〈num〉}{〈den〉} or \cfrac[r]{〈num〉}{〈den〉}.
�e following provides an example of how to use the command. In the
example, the command \dotsb is for ellipsis in combination with binary
operators or relations.

\[F = \cfrac{1}{2 +
\cfrac{1}{2 +
\cfrac{1}{2 +
\dotsb}}}\,.

\]

F =
1

2+
1

2+
1

2+ · · ·

.

8.10 Sums, Products, and Friends

�is section describes how to typeset sums, product, integrals, and re-
lated constructs. Section 8.10.1 explains the basic typesetting commands.
Section 8.10.2 explains how to get more control over the typesetting
of lower and upper limits of delimited sums, products, and so on. �is
section concludes with Section 8.10.3 which explains how to create
multi-line upper and lower limits.

Mathematics 155

8.10.1 Basic Typesetting Commands

�is section explains how to do basic typesetting of sums, products, and
related constructs. To get started we shall study typesetting sums.

�e undelimited sum symbol,
∑

, may be typeset in math mode using
the command \sum. It cannot be used in text mode.

In the delimited version the summands are parameterised by an in-
dex which ranges from a lower to an upper limit. �e subscript (_) and
superscript (ˆ) operators are used to de�ne the lower and upper lim-
its of these delimited sums. So $\sumˆn_{i = 0} f(i)$ de�nes the
delimited sum with summand f (i) and lower and upper limits for the
index variable i which are given by 0 and n respectively. �e notation
∑n

i=0 f (i) is a shorthand for f (0)+ f (1)+ f (2)+ · · ·+ f (n).

In the generalised summation notation [Graham, Knuth and Patash-
nik, 1989, Page 22] the range of the index variabe is de�ned as a condition
which is de�ned in the same position as the lower limit. Examples of
this form are

∑

0≤k<n 2−k and

∑

0≤k≤n ,odd k

2k .

If you study how the last two sums in the previous paragraph are
typeset then you may notice that their limits are typeset in di�erent
positions (relative to the

∑

symbol). �is is not a coincidence. Indeed,
in a display the limits usually appear below and above the summation
symbol. However, in inline math mode they are positioned to the lower
and upper right of the summation symbol. For inline math mode this
avoids annoying discrepancies in interline spacing.

�e following provides one more example of how to typeset delim-
ited sums.

It is well known that
$\sumˆ\infty_{n=0} 2ˆ{-n} = 2$.

However, it is less well known that the Trie Sum, S_N,
satisfies the following property as $N \to \infty$%
˜\cite[Theorem˜4.10]{Sedgewick:Flajolet:96}:

\[S_N = \sumˆ\infty_{n = 0}
\left(1-\left(1-2ˆ{-n} \right)ˆN \right)

= \lg N + O\left(\log \log N \right)\,.
\]

LATEX Input

�e following is the resulting output. Again notice that the limits
are di�erent for ordinary and displayed math.

156 Chapter 8

�is table lists variable-sized
symbols and the commands
to typeset them. All com-
mands are typeset in ordinary
math mode. �e commands
in the �rst four rows of the ta-
ble are standard LATEX com-
mands. �e commands in the
last row of the table are pro-
vided by the amsmath package.

Table 8.4 Standard
∑

\sum
∫

\int
⋂

\bigcap
∏

\prod
∮

\oint
⋃

\bigcup
⊕

\bigoplus
⊔

\bigsqcup
∧

\bigwedge
⊗

\bigotimes
∐

\coprod
∨

\bigvee
⊙

\bigodot
⊎

\biguplus

AMS-LATEX
∫∫

\iint
∫∫∫

\iiint
∫∫∫∫

\iiiint
∫

···
∫

\idotsint

It is well known that
∑∞

n=0 2−n = 2. However, it is less
well known that the Trie Sum, SN , satis�es the follow-
ing property as N →∞ [Sedgewick and Flajolet, 1996,
�eorem 4.10]:

SN =
∞
∑

n=0

�

1−
�

1− 2−n�N�= lgN +O (log logN) .

LATEX Output

�e
∑

symbol is an example of a variable-sized symbol [Lamport,
1994, Page 44]. Table 8.4 lists variable-sized symbols and the commands
to typeset them. All the commands in the table are used in exactly the
same way as you use the command \sum. �e top of the table is based
on [Lamport, 1994, Table 3.8]. �e commands in the top of the table
are standard LATEX commands. �e commands in the last two rows are
provided by the amsmath package.

8.10.2 Overriding the Basic Typesetting Style

Sometimes it is useful to change the way a variable-sized symbol is type-
set. For example, a delimited sum which occurs in the numerator of
a displayed fraction may look better if its limits are positioned to the
lower and upper right of the

∑

symbol. �e commands \textstyle and
\displaystyle allow you to override the default way the variable-sized
symbols are typeset. �e following provides an example of how to use the
\textstyle command. �e command \displaystyle is used similarly.
\[\frac{\textstyle{\sumˆ\infty_{n=0}2ˆ{-n}}}{2}

= 1\,.
\]

LATEX Input

�e following is the resulting output.
∑∞

n=0 2−n

2
= 1 .

LATEX Output

Mathematics 157

8.10.3 Multi-line Limits

�e command \substack lets you construct multi-line limits. �e follow-
ing demonstrates how it may be used in combination with the command
\sum.

\[\sum_{\substack{\text{i odd}\\0 \leq i\leq n}}
\binom{n}{i}

= 2ˆn -
\sum_{\substack{\text{i even}\\0\leq i\leq n}}

\binom{n}{i}\,.
\]

LATEX Input

�e following is the resulting output. As you may see from the input
and the output the \\ command is used to specify a newline within the
stack. All layers in the stack are centred.

∑

i odd
0≤i≤n

�n

i

�

= 2n −
∑

i even
0≤i≤n

�n

i

�

.
LATEX Output

�e subarray environment gives you more control than \substack.
�e environment takes one more parameter which speci�es the align-
ment of the layers in the stack. �e extra parameter can be ‘l’ for align-
ment to the le� or ‘c’ for alignment to the centre. �e following demon-
strates how the environment may be used to force di�erent alignments
of the two layers in the lower limits of the sums.

\[\sum_{\begin{substack}{l}
i \text{ odd}\\
0 \leq i \leq n

\end{substack}}
\binom{n}{i}

= 2ˆn -
\sum_{\begin{substack}{c}

i \text{ even}\\
0 \leq i \leq n

\end{substack}}\,. \]

LATEX Input

�e following is the resulting output. It may not be clear from the
example but the spaces in the output which are generated before the
‘odd’ and ‘even’ are the result of the spaces which are part of the \text
commands. �ey are typeset as visible spaces () in the example. �ey
are not caused by the spaces before the \text commands.

∑

i odd
0≤i≤n

�n

i

�

= 2n −
∑

i even
0≤i≤n

�n

i

�

.
LATEX Output

158 Chapter 8

Log-like functions.
Table 8.5 arccos \arccos dim \dim log \log

arcsin \arcsin exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc liminf \liminf tan \tan
deg \deg limsup \limsup tanh \tanh
det \det ln \ln

Specifying the ‘limit’ argu-
ment of existing log-like func-
tions.

Figure 8.3 \[\lim_{x \to 0}
\frac{xˆ

{2}}{x} = 0\,.
\]

lim
x→0

x2

x
= 0 .

8.11 Functions and Operators
LATEX comes with a wide range of commands for typesetting functions
and operators. However, every TEXnician some day has to face the
problem of running out of symbols. Fortunately, the amsmath package
provides a high-level command which lets you de�ne your own com-
mands for operators. �e resulting operator symbol names are typeset
properly and in a consistent style. �is command gives you full control
over the positioning of subscripts and superscripts in “limit” positions.

However, typesetting is only one part of the story. �e cool package
addresses the problem of capturing and dealing with the content of the
mathematics.

�e remainder of this section is as follows. Section 8.11.1 describes
existing commands functions and operators. Section 8.11.2 describes
the AMS-LATEX-provided command for de�ning your own function
and operator symbols. Section 8.11.3 describes the cool package.

8.11.1 Existing Operators

�e default type style for typesetting “log-like” function is math-roman
(\mathrm). Table 8.5 lists LATEX’s built-in log-like functions.

Some operators take subscripts and/or superscripts. �ey work as
usual: the subscripts are speci�ed with the subscript operator (_) and the
superscripts with the superscript operator (ˆ). Figure 8.3 demonstrates
how to get the limit of the \lim command in the subscript position.
Note that Figure 8.3 also works if we omit the braces which turn the
second argument of the superscript operator into a group. Arguably,
however, adding the braces makes the second argument stand out a bit.

�e mod symbol is also overloaded. It requires di�erent spacing de-

Mathematics 159

pending on the context. �e amsmath package provides four commands
to resolve this problem. �e names of the commands are \bmod, \mod,
\pmod, and \pod. �ey are used as follows.

\bmod
�is is for binary modular division: ‘$\gcd(5, 3) = \gcd(3, 5
\bmod 3)$’, which gives you ‘gcd(5,3) = gcd(3,5 mod 3)’.

\mod
�is is for modular equivalence: ‘$2 \equiv 5 \mod 3$’, which gives
you ‘2 ≡ 5 mod 3’. Notice the di�erence in spacing compared to the
spacing you get with the command \bmod. Here the operator symbol,
mod, is further to the right of its �rst argument.

\pmod
�is is for parenthesised modular equivalence: ‘$2 \equiv 5 \pmod
3$’, which gives you ‘2≡ 5 (mod 3)’.

\pod
�is is for parenthesised modular equivalence without mod symbol:

‘$2 \equiv 5 \pod 3$’, which gives you ‘2≡ 5 (3)’.

8.11.2 Declaring New Operators

AMS-LATEX provides the \DeclareMathOperator command for de�ning
new operator names. �e command can only be used in the preamble.

\DeclareMathOperator{〈command〉}{〈sym〉} LATEX Usage

�is de�nes a new command, 〈command〉, which is typeset as 〈sym〉.
�e 〈command〉 should start with a backslash (\). �e resulting symbol is
typeset in a uniform style and with the proper spacing. �e following is
an example.
\documentclass{article}
\DeclareMathOperator{\bop}{binop}
\begin{document}

… Note that $1 \mathrm{binop}
2 = 3$ does not look pretty.
However, $1 \bop 2 = 3$ looks good.

LATEX Input

It will give you the following output.

… Note that 1binop2 = 3 does not look pretty. However,
1binop2= 3 looks good.

LATEX Output

Notice that the appearance of both operator symbols is the same.
However, the spacing for the �rst operator symbol is dreadful since LATEX
does not recognise it as an operator.

AMS-LATEX also provides a \DeclareMathOperator* command,
which is for de�ning operator symbols that require subscripts and su-
perscripts in “limit” positions. It can only be used in the preamble. �e
following is an example.

160 Chapter 8

\documentclass{article}
\DeclareMathOperator*{\Lim}{Lim}
\begin{document}

… $\Lim_{x \to 0} \frac{xˆ{2}}{x} = 0$. …

LATEX Input

It will give you the following output.

… Limx→0
x2

x = 0. …
LATEX Output

8.11.3 Managing Content with the cool Package
�e cool package addresses the problem of capturing content.

• Provides very comprehensive list of commands for consistent type-
setting of mathematical functions and constants.

• Provides commands for easy typesetting complex matrices.
• Provides commands which a�ect the way symbols and expressions

are typeset. �is a�ects:

– How inverse trigonometric functions are typeset: arcsin x
versus sin−1 x .

– How derivatives are typeset: d
dx f versus d f

dx .
– How integrals are typeset:

∫

f dx versus
∫

dx f .
– How certain function and polynomial symbols are printed.

8.12 Integration and Di�erentiation

8.12.1 Integration
�e command \int is for typesetting simple integrals. �e following
demonstrates how to typeset de�nite integrals. Notice the standard
\left.-\right\rvert-trick for ensuring that the right bar has the correct
size. Also notice the negative thin space before the dx in the input. (A
negative thin space is required for each “d” part, so you write ‘\mathop{}
\!\mathrm{d} x\mathop{}\!\mathrm{d} y’, and so on.)
\[\intˆ{b}_{a} 3 xˆ{2}\mathop{}\!\mathrm{d} x

= \left. xˆ{3} \right\rvertˆ{b}_{a}
= bˆ{3} - aˆ{3}\,.

\]

LATEX Input

Notice that we also could have written the more terse ‘\mathrm dx’
for the ‘\mathrm{d} x’. However, arguably, adding the braces is clearer.
�e following is the resulting output.

∫ b

a
3x2 dx = x3

�

�

b
a = b 3− a3 .

LATEX Output

�e key to typesetting more exotic integrals are the the commands
which are provided by the amsmath and the esint packages. Table 8.6

Mathematics 161

�is table lists integration
signs and the commands to
typeset them. All commands
are provided by the amsmath package.

Table 8.6 ∫

\int
∫∫

\iint
∫∫∫

\iiint
∫∫∫∫

\iiiint
∫

···
∫

\idotsint

lists the commands which are provided by amsmath.2

8.12.2 Di�erentiation
Expressions with di�erentiations are typeset using the \frac command.
�e expression du

dx may be obtained with \frac{\mathrm{d} u}{\mathrm

{d} x}. More complex expressions work as expected, so d2 u
dx2 may be

obtained with \frac{\mathrm{d}ˆ{2} u}{\mathrm{d} xˆ{2}}.
�e symbol ∂ is typeset with the command \partial. �e following

provides an example.
\[\frac{\partial u}{\partial t}

= hˆ{2}
\left(\frac{\partialˆ{2} u}{\partial xˆ{2}}

+ \frac{\partialˆ{2} u}{\partial yˆ{2}}
+ \frac{\partialˆ{2} u}{\partial zˆ{2}}

\right)\,.
\]

LATEX Input

�e resulting output is as follows.

∂ u

∂ t
= h2

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2
+
∂ 2u

∂ z2

�

.
LATEX Output

Notice that the symmetry in the output can be mimicked in the
input by “stacking” the commands that typeset the three expressions
inside the parentheses. Using this formatting style, any error in the input
should be relatively easy to detect.

8.13 Roots
Square roots and other roots are typeset with \sqrt. �e command has
an optional argument for the root indices. �e following provides an
example.
… $\sqrt{2} \approx 1.414213562$ and
$\sqrt[3]{27} = 3$.

LATEX Input

�is gives you.

…
p

2≈ 1.414213562 and 3
p

27= 3.
LATEX Output

Sometimes the placement of the root indices is not perfect: β
p

k .
2Due to some technical problem (too many math alphabets) the esint-provided

symbols cannot be displayed.

162 Chapter 8

�e amsmath package provides two commands for �ne-tuning the type-
setting.

• \leftroot{〈number〉} moves the root index 〈number〉 “units” to
the le�. �e unit is an arbitrary but convenient distance. Notice
that 〈number〉 can be negative, in which case this results in moving
the root index to the right.

• \uproot{〈number〉} moves the root index 〈number〉 units up.

Using these commands $\sqrt[\leftroot{-2}\uproot{2}\beta]{k}$
gives us

βp
k .

8.14 Arrays and Matrices
Traditionally arrays were typeset using the array environment, which
works similar as the tabbing environment. High-level commands for
typesetting matrices are provided by the amsmath package. �e following
example uses LATEX’s built-in array environment to typeset a complex-ish
construct.
\[\left(\begin{array}{c}

\left\lvert \begin{array}{lrc}
x & y & z \\
0 + 1 + 2 & \alpha + \beta + \gamma & a + b + c

\end{array} \right\rvert \\
A \\ B

\end{array}
\right) \]

LATEX Input

�e resulting output is as follows.










�

�

�

�

x y z
0+ 1+ 2 α+β+ γ a+ b + c

�

�

�

�

A
B











LATEX Output

�e amsmathpackage provides the following high-level environments
for typesetting matrices.

pmatrix for matrices with
� �

delimiters.

bmatrix for matrices with
� �

delimiters.

Bmatrix for matrices with
� 	

delimiters.

vmatrix for matrices with
�

�

�

� delimiters.

Vmatrix for matrices with

 delimiters.

matrix for matrices without delimiters.

Mathematics 163

All these commands are designed for displayed math mode. �ese com-
mands do not let you specify vertical alignment. By default there are up
to ten columns, which are aligned to the centre.

AMS-LATEX also provides a smallmatrix environment for typeset-
ting matrices in inline (ordinary) math mode. �e smallmatrix envi-
ronment does not typeset the delimiters. To typeset the delimiters you
use the commands \bigl and \bigr, which are the equivalents of the
commands \left and \right respectfully, so for square bracket delim-
iters you write: $\bigl[\begin{smallmatrix} … \end{smallmatrix}
\bigr]$.

�e following is another example.
… Using matrices the linear transformation
$\langle\,x,y\,\rangle
\mapsto
\langle\,2 x + y, 3 y\,\rangle$

is written as follows:
$\bigl[\begin{smallmatrix} 2&1 \\ 0&3 \end{smallmatrix}

\bigr]
\bigl[\begin{smallmatrix} x \\ y \end{smallmatrix}

\bigr]$.
You probably knew this already. …

LATEX Input

�e following is the corresponding output.
… Using matrices the linear transformation 〈 x, y 〉 7→
〈2x+y, 3y 〉 is written as follows:

�

2 1
0 3

�� x
y
�

. You prob-
ably knew this already. …

LATEX Output

8.15 Math Mode Accents, Hats, and Other Decora-
tions
�is section is about typesetting accents and other decorations in math
mode. �e commands in this section are all of the form 〈command〉{
〈argument〉}. �e majority of the commands add a �xed-size decoration
to the 〈argument〉. For example, \hat{x} and \hat{xxx} give you
x̂ and ˆx x x . �e remaining commands provide extensible decorations.
For example, the commands \overline{x} and \overline{xxx}
give you x and x x x . �e result may not always be aesthetically pleasing.
For example, \widetilde{xxxxxx} gives you åx x x x x x . Table 8.7 lists
some commonly used commands.

8.16 Braces
A common chore is that of typesetting expressions with overbraces

(
︷ ︸︸ ︷

〈expr〉) or underbraces (〈expr〉
︸ ︷︷ ︸

). �e commands for creating such ex-

pressions are \overbrace and \underbrace. As should be clear from the

164 Chapter 8

Math mode accents, hats, and
other decorations. �e com-
mands at the top are listed
with single letter arguments.
�ey are intended for “nar-
row” arguments such as let-
ters, digits, and so on. �e
commands at the bottom pro-
duce extensible decorations.
�e commands \dddot and
\ddddot are provided by ams-
math.

Table 8.7

Fixed-size Decorations

ẋ \dot{x} x́ \acute{x}
ẍ \ddot{x} x̀ \grave{x}...x \dddot{x} x̂ \hat{x}....x \ddddot{x} x̃ \tilde{x}
�x \mathring{x} x̄ \bar{x}
x̌ \check{x} ~x \vec{x}
x̆ \breve{x}

Extensible Decorations
←−e \overleftarrow{e} e \overline{e}
−→e \overrightarrow{e} ee \widetilde{e}
←→e \overleftrightarrow{e} be \widehat{e}

e←− \underleftarrow{e} e \underbar{e}

e←→\underleftrightarrow{e} e \underline{e}

e−→ \underrightarrow{e}

disruption in inter-line spacing, the use of overbraces and underbraces
should be restricted to displayed math mode.

Expressions with underbraces can be “decorated” with expressions
under the brace. Likewise, expressions with overbraces may receive
decorations over the brace. �ese more complicated expressions are
constructed using subscript and superscript operators. �e following
demonstrates how to use the \overbrace and \underbrace commands.

\overbrace{〈under〉}

�is command gives you
︷ ︸︸ ︷

〈under〉.

\overbrace{〈under〉}ˆ{〈over〉}

�is command results in

〈over〉
︷ ︸︸ ︷

〈under〉.

\underbrace{〈under〉}

�is command gives 〈under〉
︸ ︷︷ ︸

.

\underbrace{〈over〉}_{〈under〉}

�is command results in 〈over〉
︸ ︷︷ ︸

〈under〉

.

�e decorated versions are usually needed to indicate numbers of
subterms. �e following is an example. (Notice the use of the \text
command to temporarily switch to text mode inside math mode.)

Mathematics 165

\[
\underbrace{1 \times x \times x \times \dotsb \times x}

_%
{\text{k˜times $\times x$}} = xˆ{k}\,.

\]

LATEX Input

�e following is the resulting output.

1× x × x × · · ·× x
︸ ︷︷ ︸

k times×x

= xk .
LATEX Output

8.17 Case-based De�nitions
Case-based de�nitions are very common in computer science. �ere are
two common approaches and solutions: conditions and Iversonians. �e
following explains these approaches in further detail.

Conditions With this approach we have conditions for each di�erent
case. �e following provides an example.
\[n! = \begin{cases}

1 & \text{if $n = 0$}\,; \\
(n-1) ! \times n & \text{if $n > 0$}\,.

\end{cases}
\]

LATEX Input

�is gives you the following.

n!=
¨

1 if n = 0 ;
(n− 1)!× n if n > 0 .

LATEX Output

�e disadvantage of this kind of de�nition is that it is not very suit-
able for ordinary math mode.

Iversonians Here we de�ne a 1-ary “characteristic function” which
returns 1 if its argument is true and returns 0 otherwise. In [Graham,
Knuth and Patashnik, 1989] the authors propose the notation [cond],
which they call the Iversonian of cond. Iversonian is a tribute to Ken-
neth E. Iverson, the inventor of the computer language A Programming
Language (apl), which has a similar construct. �e expression evaluates
to 1 if cond is true and 0 otherwise. �e notation 1{cond} is another ac-
cepted notation, but it has the disadvantage that it has a subscript. �e
following is an example.
… We define
$n! = [\,n = 0\,] +
(n-1) ! \times n \times [\,n > 0\,]$. …

LATEX Input

�is gives you:

… We de�ne n!= [n = 0]+ (n− 1)!× n× [n > 0]. … LATEX Output

166 Chapter 8

8.18 Function De�nitions
Function de�nitions usually come with a description of the domain, the
range, and the “computation rule.” �e following provides an example.
The successor function,
$s \colon \mathbb{N} \to \mathbb{N}$,
is defined as follows:

\[
s(n) \mapsto n + 1\,.

\]

LATEX Input

�e following is the resulting output.
�e successor function, s : N→N, is de�ned as follows:

s(n) 7→ n+ 1 .

LATEX Output

Note that the commands \to and \mapsto result in di�erent arrows.
Also note that using a colon (:) instead of the command \colon does not
result in the correct spacing: it gives ‘s :N→N’. �e \mathbb command
typesets it argument in blackboard font. �is is useful for typesetting
the symbolsN,Z,Q,R,C, and other related symbols. �e command
can only be used in math mode.

8.19 �eorems
�e package amsthm makes writing theorems, lemmas, and friends easy.
�e package ensures consistent numbering and appearance of theorem-
like environments. �e package provides:

• A proof environment;
• Styles for theorem-like environments;
• Commands for de�ning new theorem-like styles; and
• Commands for de�ning new theorem-like environments.

Section 8.19.1 is an introduction to the building blocks of theorems.
�is is followed by Section 8.19.2, which presents the default styles
for theorem-like environments. Section 8.19.3 describes how to de�ne
theorem-like environments. Section 8.19.4 explains how to de�ne new
styles for theorem-like environments. Section 8.19.5 explains how to
typeset proofs.

8.19.1 Ingredients of �eorems
�e following is the typical output of a theorem-style environment.
�eorem 2.1.3 (Fermat’s Last �eorem). Let n > 2
be any integer, then the equation an + b n = c n has no
solutions in positive integers a, b , and c .

LATEX Output

�e de�nition consists of several parts.

Mathematics 167

Heading �e heading should describe the rôle of the environment. In
this example the heading is ‘�eorem’. Usually, headings are �e-
orem, Lemma, De�nition, and so on.

Number �e number is optional and is used to refer to the environ-
ment in the running text. �is is done using the usual \label-
\ref mechanism. Numbers may depend on sectional units. If
the number depends on sectional units then it is of the form
〈unit〉.〈number〉, where 〈unit〉 is the number of the current sec-
tional unit, and 〈number〉 is a number which is local within the
sectional unit. If the number does not depend on the sectional unit
then it is a plain number. In this example, the number of the envi-
ronment is 2.1.3. �is indicates that the number depends on the
sectional unit 2.1 — probably Chapter 2.1 or Section 2.1 — and
that within the unit this is the third instance.

Body �e body of the environment is the text which conveys the mes-
sage of the environment.

Name �e name is optional. It serves two purposes. Most importantly,
the name should capture the essence of the body. Next, it may be
used to refer to the environment by name, as opposed by number
(using \ref). In this example, the name of the environment is
‘Fermat’s Last �eorem’.

8.19.2 �eorem-like Styles
�ere are three existing styles for theorem-like environments: plain, def-
inition, and remark. New styles may also be de�ned; this is explained
in Section 8.19.4. �e following explains the di�erences between the
existing styles.

plain Usually associated with: �eorem, Lemma, Corollary, Propo-
sition, Conjecture, Criterion, and Algorithm. �e following
demonstrates the appearance of the plain style.

�eorem 1.1 (Fermat’s Last �eorem). Let n > 2
be any integer, then the equation an+ b n = c n has
no solutions in positive integers a, b , and c .

LATEX Output

definition Usually associated with: De�nition, Condition, Problem,
and Example. �e following demonstrates the appearance of the
definition style.

De�nition 1.2 (Ceiling). �e ceiling of real num-
ber, r , is the smallest integer, i , such that r ≤ i .

LATEX Output

remark Usually associated with: Remark, Note, Notation, Claim, Sum-
mary, Acknowledgement, Case, and Conclusion. �e following
demonstrates the appearance of the remark style.

168 Chapter 8

Tip 1.3 (Tip). Don’t do this at home. LATEX Output

Numbering may or may not depend on the sectional unit. �e fol-
lowing explains the di�erences.

Independent numbering Here the numbers are integers. So if theorems
are numbered continuously you may have �eorem 1, �eorem 2,
�eorem 3, and so on.

Dependent numbering Here the numbers are of the form 〈unit la-
bel〉.〈local〉, where 〈unit label〉 depends on the number/label
of the sectional unit (chapter, section, …), and 〈local〉 is a local
number. With numbering dependent on a section in a book you
may have �eorem 1.1.1, �eorem 1.1.2, �eorem 2.3.1, and so
on.

Di�erent environments may be numbered di�erently.

• Di�erent environments may share the same number sequence. If
this is the case you may get �eorem 1, Lemma 2, �eorem 3, and
so on, but not �eorem 2.

• Environments may have their own independent number sequence.
If this is the case you could get �eorem 1, Lemma 1, �eorem 2,
and so on.

8.19.3 De�ning �eorem-like Environments
De�ning new theorem-like environment styles is done in two stages.
First you set the current style, next you de�ne the environments. �e
environments will all be typeset in the style which was current at the
time of de�nition of the environments.

Step 1: De�ning the current style De�ning the current style is done
with the \theoremstyle command. �e command takes the label of the
style as its argument. Initially, the current style is plain.

Step 2: De�ning the environments De�ning the environments is done
with the \newtheorem command. Environments de�ned by \newtheorem
will be typeset according to the style which was current at the time
of de�nition. �e numbering and headings of the environments are
determined by the command \newtheorem, which takes an optional
argument which may appear in di�erent positions.

�e remainder of this section explains the \newtheorem command.
We shall �rst study how to use the command without the optional ar-
gument. Next we shall study how to use it with the optional argument.
�is section closes with an example.

Without the optional argument you de�ne environments using \newthe-
orem{〈env〉}{〈heading〉}. �is de�nes a new environment 〈env〉 with
heading 〈heading〉. �e environment is started with a new numbering

Mathematics 169

Using the amsthm package.
Figure 8.4 \usepackage{amsmath}

\usepackage{amsthm}

% Current environment style is plain.
%% Define environment thm for theorems.
\newtheorem{thm}{Theorem}
%% Define environment lemma for lemmas.
%% Share numbering of with thm environment.
\newtheorem{lemma}[thm]{Lemma}

% Set environment style to definition.
\theoremstyle{definition}
%% Define environment def for definitions.
%% Share numbering with thm environment.
\newtheorem{def}[thm]{Definition}

sequence. For example, to de�ne a new environment called thm for theo-
rems with a new numbering sequence you would use \newtheorem{thm}
{Theorem}.

With the optional argument, the optional argument may be used in
di�erent positions. It may be used as the second argument and as the last
argument. �e following explains the di�erences.

• If the optional argument is used as the second argument of the
\newtheorem command, then you de�ne the environment using
\newtheorem{〈env〉}[〈old〉]{〈heading〉}. �is de�nes a new en-
vironment 〈env〉 with heading text 〈heading〉. �e environment
does not start with a new numbering sequence. Instead, the en-
vironment shares its numbering with the existing theorem-style
environment 〈old〉.

• If the optional argument is used as the last argument, you de�ne
the environment using \newtheorem{〈env〉}{〈heading〉}[〈unit〉].
�is de�nes a new environment 〈env〉 with heading 〈heading〉.
�e argument 〈unit〉 should be the name of a sectional unit, for
example, chapter, section, …. �is de�nes an environment called
〈env〉 with heading 〈heading〉 and a new numbering sequence
which depends on the sectional unit 〈unit〉.

Figure 8.4 provides an example of how the amsthm package may be
used to de�ne three theorem-like environments called thm, lem, and def
with headings Theorem, Lemma, and Definition. �e �rst two environ-
ments are typeset in the style plain. �e last environment is typeset
in the style definition. �e numbering of the environments does not
depend on sectional units and is shared.

8.19.4 De�ning �eorem-like Styles
�e command \newtheoremstyle is for de�ning new amsmath theorem-

170 Chapter 8

Math mode dot-like symbols.
Table 8.8 . \ldotp . . . \ldots · \cdotp

· · · \cdots : \colon
... \vdots

. . . \ddots

like environment styles. �is command gives you ultimate control over
�ne typesetting of the environments. Usually the prede�ned styles plain,
definition, and remark su�ce. Exact information about the command
\newtheoremstyle may be found in the amsthm documentation [Ameri-
can Mathematical Society, 2004].

8.19.5 Proofs

Writing proofs is done with the proof environment. �e environment
takes an optional argument for a title of the proof. �e environment
makes sure that it completes the proof by putting a square (�) at the
end of the proof. �is makes it easy to recognise the end of the proof.
Unfortunately, the automatic mechanism for putting the square at the
end of the proof doesn’t work well if the proof ends in a displayed formula.
To overcome this problem, there is also a command called \qedhere for
putting the square at the end of the last displayed formula. �e following
provides an example.
\begin{proof}[Technical Challenge]
To prove that $3ˆ{2} + 4ˆ{2} = 5ˆ{2}$, we note that
\[3ˆ2 + 4ˆ2 = 9 + 4ˆ2 = 9 + 16 = 25 = 5ˆ2\,. \qedhere
\]

\end{proof}

LATEX Input

Technical Challenge. To prove that 32 + 42 = 52, we note
that

32+ 42 = 9+ 42 = 9+ 16= 25= 52 .

LATEX Output

8.20 Mathematical Punctuation

LATEX provides several commands for typesetting dot-like symbols. Ta-
ble 8.8 lists LATEX’s built-in commands. Unfortunately, it is not quite
clear how these commands should be used. �e following provides some
guidelines about how these symbols should be used.

\ldotp
Used for the de�nition of \ldots [Knuth, 1990, Page 438].

\ldots
Low dots. Used between commas, and when things are juxtaposed

with no signs between them at all [Knuth, 1990, Page 172]. For exam-
ple, $f(x_{1}, \ldots, x_{n})$ gives you f (x1, . . . , xn) and $n(n-
1)\ldots(1)$ gives you n(n− 1) . . . (1).

Mathematics 171

Using the mathematical punc-
tuation commands.

Figure 8.5 \ldots Then we have series
A_1, A_2, \dotsc,

regional sum
$A_1 +A_2 +\dotsb$,

orthogonal product
$A_1 A_2 \dotsm$,

and infinite integral
\[\int_{A_1}

\!\int_{A_2}
\dotsi\,.\]

…�en we have series A1,A2, . . . ,
regional sum A1 + A2 + · · · , or-
thogonal product A1A2 · · · , and
in�nite integral

∫

A1

∫

A2

· · · .

\cdotp
Used for the de�nition of \cdots [Knuth, 1990, Page 438].

\cdots
Centred dots. Used between+ and− and× signs, between= signs

and other binary relational operator signs [Knuth, 1990, Page 172]. For
example, $x_{1}+\cdots+x_{n}$ gives you x1+ · · ·+ xn .

\colon
Used as punctuation mark [Knuth, 1990, Page 134]: $f \colon A \to
B$.

\ddots
Used in arrays and matrices.

\vdots
Used in arrays and matrices.

Notice that the command \cdot also produces a dot. However,
this is not used for punctuation. It is generally used in expressions like
(x1, . . . , xn) · (y1, . . . , yn).

Many symbols occurring in mathematical formulae require di�erent
spacing depending on their context. �e commands which reproduce
these symbols are context-unaware. �e amsmath package provides sev-
eral commands to overcome this problem. �e following commands are
for typesetting dots and sequences of dots.

\dotsc
For dots in combination with commas.

\dotsb
For dots in combination with binary operators/relations.

\dotsm
For multiplication dots.

\dotsi
For dots with integrals.

\dotso
For other dots.

Figure 8.5 demonstrates the e�ect of these commands. �is �gure is
based on the amsmath documentation [American Mathematical Society,
2002].

172 Chapter 8

8.21 Spacing and Linebreaks
�is section provides some information and guidelines related to spacing
and linebreaking in math mode. �e majority of this section is based
on [Knuth, 1990, Chapter 18].

8.21.1 Line Breaks

LATEX may break lines a�er commas in text mode but it doesn’t lines a�er
commas in math mode. �is makes sense since you don’t want to see
a break a�er the comma in ‘ f (a, b)’. Make sure you keep the commas
which are part of formulae inside the dollar expressions in ordinary math
mode. �e remaining commas should be kept outside. �e following is
correct.
for $x = f(a, b)$, $f(b, c)$, or˜$f(b, c)$. LATEX Usage

However, the following is not correct.
for $x = f(a, b), f(b, c)$, or $f(b, c)$.Don’t Try this at Home

In displayed math mode the TEXpert is ultimately responsible for
linebreaks and inserting whitespace. �is is especially true in environ-
ments with vertical alignment. �e following are a few guidelines.

• Always insert a thin space (\,) before punctuation symbols at the
end of the lines.

• In sums or di�erences linebreaks should be inserted before the plus
or minus operator. On the next line you should insert a qquad
a�er the alignment position. Here a qquad is equivalent to two
quads. One quad is the equivalent of the with of the uppercase ‘M’.
If the continuation line is short you may even consider inserting
several qquads. You insert a single quad with the command \quad.
A single qquad is inserted with the command \qquad.
\begin{align*}
f(x) & = a + b + c + d \\

& \qquad + e + f + g\,.
\end{align*}

LATEX Usage

• Linebreaks in products should occur a�er the multiplication op-
erator. �e operator should be repeated on the next line.
\begin{align*}
f(x) & = a \times b \times c \times d \times\\

& \qquad \times e \times f \times g\,.
\end{align*}

LATEX Usage

8.21.2 Conditions

In ordinary math mode, you should put an extra space for conditions
following equations. �is makes the conditions stand out a bit more.

Mathematics 173

The Fibonacci numbers satisfy
$F_{n} = F_{n - 1} + F_{n - 2}$,
\ $n \geq 2$.

LATEX Usage

However, it is probably better to turn the previous example into a
proper sentence as follows.
The Fibonacci numbers satisfy
$F_{n} = F_{n - 1} + F_{n - 2}$,
for˜$n \geq 2$.

LATEX Usage

If you need to add an additional condition to a formula in displayed
math mode then the two should be separated with a single qquad.
\[zˆ{m} G(z)

= \sum_{n} g_{n - m} zˆ{n}\,,
\qquad\text{integer $m \geq 0$}\,.

\]

LATEX Usage

Alternatively, you can put the condition in parentheses. However, if
you do this, you have to omit the comma before the condition.
\[zˆ{m} G(z)

= \sum_{n} g_{n - m} zˆ{n}
\qquad\text{(integer $m \geq 0$)}\,.

\]

LATEX Usage

8.21.3 Physical Units

Physical units should be typeset in roman (\mathrm). In expressions of
the form 〈number〉 〈unit〉, you insert a thin space between the number
and the unit: 〈number〉\,〈unit〉. �e following is a concrete example.
$g = 9.8\,\mathrm{m}/\mathrm{s}ˆ{2}$ LATEX Usage

�e siunitx package provides support for typesetting units. Using
the package you write ‘\SI{9.8}{\metre\per\second\squared}’. �is
gives you 9.8ms−2 as standard, or 9.8m/s2 by setting ‘per=slash’ with
the \sisetup macro. More information about the siunitx package may
be found in the package documentation [Wright, 2008].

8.21.4 Sets

Sets come in two �avours. On the one hand there are “ordinary” sets the
de�nitions of which do not depend on conditions: {1}, {3,5,6}, and
so on. On the other hand there are “guarded set” whose de�nitions do
depend on conditions: {2n : n ∈N} and so on.

For ordinary sets there is no need to add additional spacing a�er the
opening brace and before the closing brace.
The natural numbers, \mathbb{N}, are defined
$\mathbb{N} = \{ 0, 1, 2, \ldots \}$.

LATEX Usage

174 Chapter 8

�is table demonstrates the
e�ect of the positive and neg-
ative spacing commands. �e
�rst two columns list the pos-
itive spacing commands, the
next two columns demon-
strate the e�ect of the \hphan-
tom command, and the last
two columns list the nega-
tive spacing commands. It is
assumed that all these com-
mands are used in inline math mode. �e horizontal space from the tip of the arrow pointing to the right to the tip of the arrow
pointing to the le� in the second column demonstrates the e�ect of the spacing. �e spacing is negative if the arrow tips overlap
horizontally.

Table 8.9 Positive Spacing \hphantom Negative Spacing

\, \hphantom{M} \!
\thinspace M M \negthinspace
\: \hphantom{zˆn} \negmedspace
\medspace zˆn zn \negthickspace
\;
\thickspace
\quad
\qquad

For guarded sets you insert a thin space a�er the opening and before
the closing brace. �e use of a thin space before and a�er the colon is
not recommended by [Knuth, 1990], but it may be argued that it makes
the result easier to read.
The even numbers, E, are defined
$E = \left{\, 2 n \,:\, n \in \mathbb{N} \,\right}$.

LATEX Usage

If you don’t like the colon then you should write
The even numbers, E, are defined
$E = \left{\, 2 n \,\mid\, n \in \mathbb{N} \,\right}$.

LATEX Usage

8.21.5 More Spacing Commands

Table 8.9 demonstrates the e�ect of the horizontal spacing commands.
�e command \hphantom, which is listed in Table 8.9, is related to the
command \phantom. It results in a horizontal space which is equal to the
width of its argument.

8.22 Changing the Style
�e following six commands let you change the type style in math mode.

$\mathit{italic + abcˆ2}$

�is typesets its argument in ‘math italics’: italic+ abc2.
$\mathrm{roman + abcˆ2}$

�is typesets its argument in ‘math roman’: roman+ abc2.
$\mathbf{bold + abcˆ2}$

�is typesets its argument in the default ‘math bold face’ font: bold+ abc2.
Notice that \mathbf may not always result in bold symbols. Although
not ideal, the commands \pmb (poor man’s bold) and \boldsymbol may
be useful in cases like this.

Mathematics 175

�is table lists the binary
operation symbols and the
commands to typeset them.
�e commands \lhd, \rhd,
\unlhd, and \unlhd are pro-
vided by the amssymb package.
FIXME: mathdesign doesn’t
properly typeset \unlhd.

Table 8.10 q \amalg � \diamond \ \setminus
∗ \ast ÷ \div u \sqcap
© \bigcirc Ã \lhd t \sqcup
5 \bigtriangledown ∓ \mp ? \star
4 \bigtriangleup � \odot / \triangleleft
• \bullet 	 \ominus . \triangleright
∩ \cap ⊕ \oplus Ã \unlhd
· \cdot � \oslash] \uplus
◦ \circ ⊗ \otimes Ä \unrhd
∪ \cup ± \pm ∨ \vee
† \dagger Â \rhd ∧ \wedge
‡ \ddagger × \times o \wr

$\mathsf{sans serif + abcˆ2}$
�is typesets its argument in ‘math sans serif ’: sansserif+ abc2.

$\mathtt{teletype + abcˆ2}$
�is typesets its argument in ‘math monospaced font’. �ese fonts are

also known as teletype fonts: teletype+ abc2.
$\mathcal{CALLIGRAPHIC}$

�is typesets its argument in ‘math calligraphic’. �e calligraphic letters
only come in uppercase:CALLIGRAPHIC .

8.23 Symbol Tables
�is section presents various tables with commands math mode symbols.
Section 8.23.1 starts by presenting commands for operator symbols. �is
is followed by Section 8.23.2, which presents commands for relation
symbols. Section 8.23.3 continues by presenting commands for arrows.
Section 8.23.4 presents the remaining commands. �e presentation is
mainly based on [Lamport, 1994] and [Pakin, 2005].

8.23.1 Operation Symbols
LATEX provides several symbols for binary operations. Table 8.10 lists
them all.

8.23.2 Relation Symbols
�e symbols for relations you get with LATEX is quite impressive. Ta-
ble 8.11 lists LATEX’s built-in symbols for binary relations. Additional
commands which are provided by amsmath are listed in Table 8.12.

8.23.3 Arrows
LATEX de�nes several commands for drawing arrows. All these commands
produce �xed-size arrows. Extensible arrows are provided by additional
packages. Table 8.13 lists all LATEX ’s built-in commands for �xed-size

176 Chapter 8

�is table lists relation sym-
bols and the commands to
typeset them. �e commands
\Join, \sqsubset, and \sq-
supset are provided by the
amssymb package.

Table 8.11 < < = = ≤ \leq
> > � \ll ^ \smile
≈ \approx | \mid v \sqsubseteq
� \asymp |= \models À \sqsubset
./ \bowtie 6= \neq w \sqsupseteq
∼= \cong 3 \ni Á \sqsupset
a \dashv /∈ \notin ⊆ \subseteq.= \doteq ‖ \parallel ⊂ \subset
≡ \equiv ⊥ \perp � \succeq
_ \frown � \preceq � \succ
≥ \geq ≺ \prec ⊇ \supseteq
� \gg ∝ \propto ⊃ \supset
∈ \in ' \simeq ` \vdash
\ \Join
∼ \sim

Additional amsmath-provided
relation symbols.

Table 8.12 u \approxeq Ð \eqcirc v \succapprox
∋ \backepsilon » \fallingdotseq ¼ \succcurlyeq
ö \backsim ¨ \multimap ¥ \succsim
÷ \backsimeq ô \pitchfork ∴ \therefore
∵ \because w \precapprox t \thickapprox
Ç \between ´ \preccurlyeq s \thicksim
í \Bumpeq ­ \precsim ∝ \varpropto
ì \bumpeq º \risingdotseq � \Vdash
¤ \circeq p \shortmid � \vDash
² \curlyeqprec q \shortparallel � \Vvdash
³ \curlyeqsucc á \smallfrown « \doteqdot
à \smallsmile

arrows. Some commands for extensible arrows are listed in Tables 8.14–
8.16. �ese commands, some of which accept an optional argument,
require additional packages.

8.23.4 Miscellaneous Symbols

Table 8.17 lists LATEX’s “miscellaneous” symbols. It is worthwhile point-
ing out that the command \imath and \jmath produce a dotless ı and a
dotless . �ese symbols should be used in combination with hats and
similar decorations. �e following example, should show why.
Some people write $\hat{i} + \hat{j}$
but I prefer $\hat{\imath} + \hat{\jmath}$.

LATEX Input

�e following is the output.

Some people write î + ĵ but I prefer ı̂ + ̂.
LATEX Output

Mathematics 177

Fixed-size arrow symbols.
Table 8.13 ↓ \downarrow ⇓ \Downarrow

↑ \uparrow ⇑ \Uparrow
l \updownarrow m \Updownarrow
← \leftarrow ⇐ \Leftarrow
→ \rightarrow ⇒ \Rightarrow
←− \longleftarrow ⇐= \Longleftarrow
−→ \longrightarrow =⇒ \Longrightarrow
↔ \leftrightarrow ⇔ \Leftrightarrow
←→\longleftrightarrow ⇐⇒\Longleftrightarrow
7→ \mapsto ←- \hookleftarrow
7−→ \longmapsto ,→ \hookrightarrow
(\leftharpoonup ↗ \nearrow
) \leftharpoondown ↘ \searrow
* \rightharpoonup ↙ \swarrow
+ \rightharpoondown ↖ \nwarrow
� \rightleftharpoons

Extensible amsmath-provided
arrow symbols.

Table 8.14 e←− \xleftarrow{e}
e←−
o

\xleftarrow[o]{e}
e−→ \xrightarrow{e}

e−→
o

\xrightarrow[o]{e}

e←− \underleftarrow{e} e−→ \underrightarrow{e}
←→e \overleftrightarrow{e} e←→ \underleftrightarrow{e}

�is table lists non-standard
mathtools-provided exten-
sible arrow symbols and the
commands to typeset them.
All these commands also take
an optional argument. �e
versions with options are
listed in Table 8.16.

Table 8.15 e
(−−+ \xleftrightharpoons{e}

e−*)− \xrightleftharpoons{e}
e
)− \xleftharpoondown{e}

e−+ \xrightharpoondown{e}
e
(− \xleftharpoonup{e}

e−* \xrightharpoonup{e}
e←→ \xleftrightarrow{e}

e
⇐⇒ \xLeftrightarrow{e}

e
←−- \xhookleftarrow{e}

e
,−→ \xhookrightarrow{e}

e
⇐= \xLeftarrow{e}

e
=⇒ \xRightarrow{e}

e7−→ \xmapsto{e}

It is interesting to point out that it is easier to distinguish the symbol
‘`’ (ℓ) from the digit ‘1’ than it is to distinguish the letter ‘l ’ (l)
from the digit ’1’. �is makes ‘\ell’ an ideal alternative for the letter ‘l ’.

178 Chapter 8

�is table lists non-standard
mathtools-provided extensi-
ble arrow symbols and the
commands to typeset them.
Table 8.15 lists how these
commands work without the
optional argument.

Table 8.16 e
(−−+

o
\xleftrightharpoons[o]{e}

e−*)−
o

\xrightleftharpoons[o]{e}

e
)−

o
\xleftharpoondown[o]{e}

e−+
o

\xrightharpoondown[o]{e}
e
(−

o
\xleftharpoonup[o]{e}

e−*
o

\xrightharpoonup[o]{e}
e←→
o

\xleftrightarrow[o]{e}
e
⇐⇒

o
\xLeftrightarrow[o]{e}

e
←−-

o
\xhookleftarrow[o]{e}

e
,−→

o
\xhookrightarrow[o]{e}

e
⇐=

o
\xLeftarrow[o]{e}

e
=⇒

o
\xRightarrow[o]{e}

e7−→
o

\xmapsto[o]{e}

�is table lists miscellaneous
math mode symbols and the
commands to typeset them.
�e commands \Box, \Dia-
mond, and \mho are provided
by the amssymb package.

Table 8.17 ℵ \aleph [\flat ¬ \neg
∠ \angle ∀ \forall ℜ \Re
\ \backslash ħh \hbar

p
\surd

⊥ \bot ♥ \heartsuit > \top
� \Box ℑ \Im 4 \triangle
♣ \clubsuit ı \imath ∂ \partial
◊ \Diamond ∞ \infty ′ \prime
♦ \diamondsuit  \jmath] \sharp
` \ell f \mho ♠ \spadesuit
; \emptyset ∇ \nabla ℘ \wp
∃ \exists \ \natural ‖ \|

Chapter 9
Algorithms and Listings

Algorithms are ubiquitous in computer science papers. Knowing
how to present your algorithms increases the chances of getting your
ideas across. �e remainder of this chapter explains how to typeset
pseudo-code with the algorithm2epackage and how to present verbatim
program listings with the listings package.

9.1 Typesetting Algorithms with algorithm2e

�is section provides an introduction to algorithm2e, which appears
to be one of the more popular packages for typesetting algorithms. �e
remainder of this section explains the more important aspects of the pack-
age. �e content is mainly based on the package documentation [Firio,
2004]. Notice that if you don’t like the algorithm2e package then you
can always fall back to the tabbing environment, which is explained in
Section 2.14.6.

9.1.1 Importing algorithm2e

Importing algorithm2e properly may save time when writing your al-
gorithms. An important option is algo2e. �is option renames the
environment algorithm to algorithm2e so as to avoid name clashes
with other packages. �ere are several options which a�ect the appear-
ance of the algorithms. �e following three control the typesetting of
blocks.

noline �is option results in blocks which are typeset without lines
marking the duration of the block with vertical lines. �e picture
to the le� of Figure 9.1 demonstrates the e�ect of this option for
a simple conditional statement.

lined �is option results in vertical lines indicating the duration of the
blocks. �e keyword which indicates the end of the block is still
typeset. �e picture in the centre of Figure 9.1 demonstrates the
e�ect of this option for a simple conditional statement.

vlined �is option also result in vertical lines indicating the duration
of a block. However, this time the end of each block is indicated

179

180 Chapter 9

�e e�ect of the options no-
line, lined, and vlined of
algorithm2e. �e picture to
the le� is the result of using
the option noline, that in the centre is the result of using the option lined, and that to the right is the result of
using the option vlined. �e option vlined is the most e�cient in terms of saving vertical space.

Figure 9.1
if 〈cond〉 then

〈stuff〉
end

if 〈cond〉 then
〈stuff〉

end

if 〈cond〉 then
〈stuff〉

by a little “bend” in the line. With this option the keyword indi-
cating the end of the block is not typeset. �e picture to the right
of Figure 9.1 demonstrates the e�ect of this option for a simple
conditional statement. Compared to the other options, this op-
tion is more economical in terms of saving vertical space. When
writing a paper this may make the di�erence between making the
pagecount and overrunning it.

�e algorithm2ehas many more options, but the ones mentioned before
appear to be the more useful ones. For further information the reader
may wish to read the package’s documentation. All examples in the
remainder of this section are typeset with the option vlined.

9.1.2 Basic Environments
�e algorithm2e package de�nes a number of basic environments. Each
of them is typeset in a �oating environment like, which is an evironment
like figure or table. �e \caption option is available in the body of
the environment and works as expected. �e \caption command is
explained in Section 6.5. �e command \listofalgorithms may be
used to output a list of the algorithms with a caption. �is is usually
done in the document preamble. �e package option dotocloa adds an
entry for the list of algorithms in the table of contents. �e following
are the environments:

algorithm Typesets its body as an algorithm.

algorithm* Typesets its body as an algorithm in a two-column docu-
ment. �e resulting output occupies two columns.

procedure Typesets its body as an procedure. Compared to algorithm
there are a couple of di�erences:

• �e caption starts by listing ‘Procedure 〈name〉’.
• �e caption must start with ‘〈name〉(〈arguments〉)’.

procedure* Typesets its body as an procedure in a two-column docu-
ment. �is environment works just as procedure but the resulting
output occupies two columns.

function Typesets its body as a function. �is environment works just
as procedure.

Algorithms and Listings 181

Using algorithm2e.
Figure 9.2 \begin{algorithm2e}[H]

\KwIn{
Integers $a \geq 0$ and $b \geq 0$}

\KwOut{\textsc{Gcd}
of a and b}
\While{$b \neq 0$}{

$r \leftarrow a \bmod b$\;
$a \leftarrow b$\;
$b \leftarrow r$\;

}
\caption{Euclidean Algorithm}
\end{algorithm2e}

Input: Integers
a ≥ 0 and
b ≥ 0

Output: Gcd of a
and b

while b 6= 0 do
r ← a mod b ;
a← b ;
b ← r ;

Algorithm 1: Eu-
clidean Algorithm

function* Typesets its body as a function in a two-column document.
�is environment works just as function but the resulting output
occupies two columns.

Each environment can be positioned using the optional argument of the
environment. As usual the optional argument is any combination of ‘p’,
‘t’, ‘b’, or ‘h’, and each has the usual meaning. �is positioning mechanism
is explained in Section 6.5. �e option ‘H’ is also allowed and means
“de�nitely here”. If you don’t know how to use these optional positioning
arguments then it is recommended that you use ‘tbp’:
\begin{algorithm2e}[tbp]
…
\end{algorithm2e}

LATEX Usage

It is always a good to get some idea of the functionality of a package
by looking at an example. Figure 9.2 demonstrates some of the function-
ality of algorithm2e. Notice that the semicolons are typeset with the
command \;.

9.1.3 Describing Input and Output
�e algorithm2e package de�nes several commands for describing the
input and output of the algorithms. It also provides a mechanism to add
keywords and de�ne a style for classes of keywords. �is section brie�y
mentions the main commands for describing the input and output of
the algorithms.

\KwIn{〈input〉}
�is typesets the value of the ‘In’ label followed by 〈input〉. Figure 9.2
demonstrates how this works. It is possible to rede�ne the value of the
label for ‘In’. �is is also possible for all other labels mentioned in this
list.

\KwOut{〈input〉}
�is typesets the value of the ‘Out’ label followed by 〈output〉.

182 Chapter 9

\KwData{〈input〉}
�is typesets the value of the ‘Data’ label followed by 〈input〉.

\KwResult{〈output〉}
�is typesets the value of the ‘Result’ label followed by 〈output〉.

\KwRet{〈value〉}
�is typesets the value of the ‘Ret’ label followed by 〈value〉. �e

command is used to describe return values.

9.1.4 Conditional Statements

�e algorithm2e package de�nes a large array of commands for type-
setting conditional statements. �is includes commands for typesetting
one-line statements. �e remainder of this section explains some of
the commands for typesetting simple multi-line conditional statements.
Information about the remaining commands may be found in the the
package documentation. �e following are the commands.

\If(〈comment〉){〈condition〉}{〈clause〉}
�is typesets a single conditional statement with condition 〈condition〉
and �nal then clause 〈clause〉. �e argument which is enclosed in paren-
theses is for describing a comment. �is argument is optional and may
be omitted (including the arguments). �e following is an example of
the resulting output. �e comment has been omitted.

\If{〈condition〉}
〈clause〉

if 〈condition〉 then
〈clause〉

\uIf(〈comment〉){〈condition〉}{〈clause〉}
�is works as \If only this time it is assumed that 〈clause〉 is not the
�nal clause. �e following is the resulting output.

\uIf{〈condition〉}{
〈clause〉}

if 〈condition〉 then
〈clause〉

\ElseIf(〈comment〉){〈condition〉}{〈clause〉}}
�is typesets a conditional else clause with condition 〈condition〉 and

�nal if else clause 〈clause〉.

\ElseIf{〈condition〉}
{〈clause〉}

else if 〈condition〉 then
〈clause〉

\uElseIf(〈comment〉){〈condition〉}{〈clause〉}}
�is typesets a conditional else clause with condition 〈condition〉 and

non-�nal else clause 〈clause〉.

\eUlseIf{〈condition〉}
{〈clause〉}

else if 〈condition〉 then
〈clause〉

Algorithms and Listings 183

Typesetting conditional state-
ments with algorithm2e.

Figure 9.3 \begin{algorithm2e}[tbp]
\uIf{$a < 0$}{

\tcp{$a < 0$}
} \uElseIf{$a = 0$}{

\tcp{$a = 0$}
} \lElse\eIf{$a = 1$}{

\tcp{$a = 1$}
} {

\tcp{$a > 1$}
}
\end{algorithm2e}

if a < 0 then
// a < 0

else if a = 0 then
// a = 0

else if a = 1 then
// a = 1

else
// a > 1

\eIf(〈comment〉){〈condition〉}{〈then clause〉}(〈comment〉){〈else clause〉}}
�is typesets the if else clause with condition 〈condition〉 with then

clause 〈then clause〉 and �nal else clause 〈else clause〉. As suggested
by the notation, both 〈comment〉 arguments are optional.

\eIf{〈condition〉}
{〈then clause〉}
{〈then clause〉}

if 〈condition〉 then
〈then clause〉

else
〈else clause〉

\lElse
�is typesets the word else. �is is mainly useful in combination with
\eIf.

Figure 9.3 provides an example which demonstrates how to typeset
a complex-ish if statement. �e command \tcp typesets its argument
as a C++ comment.

9.1.5 �e Switch Statement

�is section brie�y explains algorithm2e’s commands for typesetting
switch statements. �e following are the commands.

\Switch(〈comment〉){〈value〉}{〈cases〉}
�is typesets the �rst line and the braces for the body of the switch

statement. �e following is the resulting output.

\Switch{〈value〉}
{〈cases〉}

switch 〈value〉 do
〈cases〉

\Case(〈comment〉){〈condition〉}{〈statements〉}
�is typesets the �nal case of the switch statement. �e following is the
resulting output.

\Case{〈condition〉}
{〈statements〉}

case 〈condition〉
〈statements〉

184 Chapter 9

Using algorithm2e’s switch
statements.

Figure 9.4 \begin{algorithm2e}[tbp]
\Switch{order}{

\uCase{bloody mary}{
Add tomato juice\;
Add vodka\;
break\;

}
\uCase{hot whiskey}{

Add whiskey\;
Add hot water\;
Add lemon and cloves\;
Add sugar or honey to taste\;
break\;

}
\Other{Serve water\;}

}
\end{algorithm2e}

switch order do
case bloody mary

Add tomato
juice;
Add vodka;
break;

case hot whiskey
Add whiskey;
Add hot water;
Add lemon and
cloves;
Add sugar or
honey to taste;
break;

otherwise
Serve water;

\uCase(〈comment〉){〈condition〉}{〈statements〉}
�is also typesets a case of the switch statement, but here it is assumed

the case is not the last case of the switch statement. �e following is the
resulting output.

\uCase{〈condition〉}
{〈statements〉}

case 〈condition〉
〈statements〉

\Other(〈comment〉){〈statements〉}
�is typesets the default case of the switch statement. �e following is

the resulting output.

\Other{〈statements〉} otherwise
〈statements〉

Figure 9.4 provides a complete example of how to typeset a switch
statement.

9.1.6 Iterative Statements

�e algorithm2e package has constructs for several iterative statements,
including while, for, foreach-based, and repeat-until statements. �is
section provides a brief explanation of each of these commands.

�e following are the commands.
\For(〈comment〉){〈condition〉}{〈body〉}

�is typesets a basic for statement with a “condition” 〈condition〉 and
body 〈body〉. �e following is an example of the result.

Algorithms and Listings 185

\For{〈condition〉}
{〈body〉}

for 〈condition〉 do
〈body〉

\ForEach(〈comment〉){〈condition〉}{〈body〉}
�is typesets a foreach statement with a “condition” 〈condition〉 and
body 〈body〉. �e following is an example of the result.

\ForEach{〈condition〉}
{〈body〉}

foreach 〈condition〉 do
〈body〉

\ForAll(〈comment〉){〈condition〉}{〈body〉}
�is typesets a forall statement with a “condition” 〈condition〉 and

body 〈body〉. �e following is an example of the result.

\ForAll{〈condition〉}
{〈body〉}

forall 〈condition〉 do
〈body〉

\While(〈comment〉){〈condition〉}{〈body〉}
�is typesets a while statement with condition 〈condition〉 and body
〈body〉. �e following is an example of the result.

\While{〈condition〉}
{〈body〉}

while 〈condition〉 do
〈body〉

\Repeat(〈comment〉){〈condition〉}{〈body〉}(〈comment〉)
�is typesets a repeat-until statement with and body 〈body〉. �e

following is an example of possible output.

\Repeat{〈condition〉}
{〈body〉}

repeat
〈body〉

until 〈condition〉 ;

Note that the �rst comment is put on the repeat line, whereas the
second comment is put on the until line.

9.1.7 Comments

�is Section, which concludes the discussion of the algorithm2e pack-
age, explains how to typeset comments. Comments are de�ned in a C
and C++ style. For a given language there are di�erent styles of comments.
�e command for tpesetting C comments is \tcc, that for typesetting
C++ comments is called tcp. �e following explains the tcp command.
�e \tcc command works analogously.

\tcp{〈comment〉}
Typesets the comment 〈comment〉. �e comment may consist of several
lines, which should be separated with the newline command (\\). �e
following is an example.

186 Chapter 9

\tcp{〈line one〉}\\
{〈line two〉}

// 〈line one〉
// 〈line two〉

\tcp*{〈comment〉}
�is typesets the side comment 〈comment〉 right justi�ed. �e command
\tcp*[r]{〈comment〉} works analogously.
〈statement〉

\tcp*{〈comment〉} 〈statement〉 ; // 〈comment〉

\tcp*[l]{〈comment〉}
�is typesets the side comment 〈comment〉 le� justi�ed.
〈statement〉

\tcp*[l]{〈comment〉} 〈statement〉 ; // 〈comment〉

\tcp*[h]{〈comment〉}
�is typesets the comment 〈comment〉 le� justi�ed in place (here).
\If(\tcp*[h]{〈comment〉})

{〈condition〉}
{〈statement〉}

if 〈condition〉 then // 〈comment〉
〈statement〉

\tcp*[f]{〈comment〉}
�is typesets the comment 〈comment〉 right justi�ed in place (here).
\If(\tcp*[f]{〈comment〉})

{〈condition〉}
{〈statement〉}

if 〈condition〉 then // 〈comment〉
〈statement〉

9.2 Typesetting Listings with the listings Package
�e listings package is one of the nicer packages for creating formatted
output. �e remainder of this section is a brief example-driven intro-
duction to the package. More information may be found in the package
documentation [Heinz and Moses, 2007].

�e listings package supports typesetting of listings. �e pack-
age provides support for several languages, including ANSI C, and ANSI
C++, Eiffel, HTML, Java, PHP, Python, LATEX, and XML. �e package sup-
ports user-de�ned styles for keywords and identi�ers. Two methods are
provided for specifying a listing.

Environment An environment called lstlisting for specifying a list-
ing in the body of the environment.

Command A command called \lstinputlisting for creating a listing
from a source �le. �e required argument of this command is the
name of the source code �le. �e optional argument is for setting
the options.

Both the environment and the command take an optional argument, in
the form of a 〈key〉=〈value〉 list, for overriding the default settings. �e

Algorithms and Listings 187

Creating a partial listing with
the listings package.

Figure 9.5 \begin{lstlisting}[language=Java%
,gobble=3%
,numbers=left%
,firstline=2%
,lastline=4%
,firstnumber=2%
,caption=Hello World.%
,label=example]

public class Greetings {
public static void main(String[] args) {

System.out.println("Hello world!");
}

}
\end{lstlisting}

Listing resulting from Fig-
ure 9.5

Figure 9.6 2 public static void main(String[] args) {
3 System.out.println("Hello world!");
4 }

Listing 1. Hello world.

package also provides a command for setting new defaults. �e resulting
algorithm may be typeset at the current position or as a �oating algorithm
with a number and caption. �e package also provides a command called
\listoflistings for typesetting a list of numbered listings.

Figure 9.5 shows how you use the lstlistings environment. �e
resulting output is presented in Figure 9.6. Note that not all of the
body of the environment is typeset and that the resulting numbers are
generated automatically. �e following explains the relevant options.

language
�is speci�es the programming language. Possible values are ‘C’, ‘[ANSI]C’,

‘C++’, ‘[ANSI]C++’, ‘HTML’, ‘Eiffel’, ‘HTML’, ‘Java’, ‘PHP’, ‘Python’, ‘LaTeX’, and
‘XML’.

gobble
�is determines the number of characters which are removed from the

start of each line in the input. �e default value is 0.
numbers

�is is used to control the placement of numbers. Possible values are
‘none’ (default) for no numbers, ‘left’ for numbers to the le�, and ‘right’
for numbers to the right.

firstline
�e value of this option determines the number of the �rst input line
that is typeset. It may be useful to skip a number of lines at the start of
the source. �e default value is 1.

lastline
�is option determines the number of the last input line that is typeset.

�e default value is the number of lines in the input.

188 Chapter 9

Setting new defaults with the
\lstset command.

Figure 9.7 \lstset{language=Java%
,keywordstyle=\bfseries\ttfamily%
,stringstyle=\ttfamily%
,identifierstyle=\ttfamily\itshape%
,showspaces=false%
,showstringspaces=true%
,numbers=left%
,float%
,floatplacement=tbp%
,captionpos=b}

firstnumber
�is is the �rst line number in the output.

caption
�is determines the caption of the typeset listing.

label
�is determines the label of the typeset listing.

As already announced the listings package also provides a com-
mand for specifying new default option values. �e name of this com-
mand is \lstset and its required argument is a 〈key〉=〈value〉 list argu-
ment speci�es the new default values for the options.

Figure 9.7 provides an example that overrides some of the default set-
tings. Some of these options have been explained before. �e remaining
options work as follows.

keywordstyle
�e value of this option should be a series of declarations that determines
how keywords are typeset. �e declarations ‘\bfseries\ttfamily’ in
Figure 9.7 result in bold face keywords which are typeset in a monospaced
font.

stringstyle
�e value of this option should be a series of declarations that determines
how characters are typeset in strings. �e declaration ‘\ttfamily’ in
Figure 9.7 result in string characters which are typeset in a monospaced
font.

identifierstyle
�e value of this option should be a series of declarations that determines
how identi�ers are typeset. �e declarations ‘\ttfamily\itshape’ in
Figure 9.7 result in identi�ers which are typeset in a monospaced italic
font.

showspaces
If the value of this option is ‘true’ then spaces are typeset as visual spaces.
�e default value is ‘false’.

showstringspaces
If the value of this option is ‘true’ then spaces in strings are typeset as

visual spaces. �e default value is ‘false’.

Algorithms and Listings 189

float
If this option is provided then the listing is typeset as a �oat.

floatplacement
�e value of this option determines the �oat placement. It can be any
sequence of characters in ‘tbph’.

captionpos
�is determines the position of the caption. Possible values are ‘t’ (top)
and ‘b’ (bottom).

190 Chapter 9

Part V

Automation

191

Chapter 10
Commands and Environments

This chapter studies user-de�ned commands and environments.
Section 10.1 starts by studying advantages and disadvantages of com-
mands. �is is followed by Section 10.2, which explains how to de-
�ne user-de�ned commands. Section 10.3 recalls the working of TEX’s
four processors and Section 10.4 explains how they process LATEX com-
mands. Section 10.5 explains how to de�ne commands in plain TEX.
Section 10.6 presents a common technique for tweaking existing com-
mands. Section 10.7 presents a technique which overcomes the problem
that LATEX allows no more than nine arguments. Section 10.8 is an in-
troduction to environments and Section 10.9 concludes by explaining
how to de�ne your own environments.

10.1 Why use Commands
LATEX is a programmable typesetting engine. Commands are the key
to controlling your document. �e advantages of using commands in
LATEX are similar to the advantages of using functions and procedures in
high-level programming languages. However, LATEX commands also have
disadvantages. We shall �rst study advantages and then disadvantages.
�e following are some advantages.

So�ware engineering Tedious tasks can be automated. �is has the
following advantages.

Reusability Commands which are de�ned once can be reused
several times.

Simplicity Carrying out a complex task using a simple command
with a well-understood interface is much easier and leads to
fewer errors.

Re�nement You can stepwise re�ne the implementation of cer-
tain tasks. �is allows you to postpone certain decisions.
For example, if you haven’t been able to decide how to type-
set certain symbols which serve a certain purpose, then you
may start typesetting them using a command which type-
sets them in a simple manner. �is lets you start writing the

193

194 Chapter 10

document in terms of high-level notions. By re�ning the
command at a later stage, you can �ne-tune the typesetting
of all the relevant symbols.

Maintainability �is advantage is related to the previous item.
Unforeseen changes in requirements can be implemented
easily by making a few local changes.

Consistency Typesetting entities using carefully chosen com-
mands guarantees a consistent appearance of your docu-
ment. For example, if you typeset your pseudo-code identi-
�ers using a pseudo-code identi�er typesetting command
in a ‘pseudo-code identi�er’ style, then your identi�ers will
have a consistent feel.

Computing Tasks and results may be computed depending on docu-
ment options. �is has the following advantages.

Style control �ings may be typeset in a style which depends on
class or package options. For example, the article class
typesets the main text in 10 pt by default but providing a
12pt option gives you a 12 pt size.

Content control Commands may result in di�erent output if
there are di�erent global options. For example, consider
the beamer class, which allows you to prepare a computer
presentation and lecture notes in the same input. It provides
options which allow you to hide certain parts of your lecture
notes in the presentation and vice versa. �is is very a po-
tent feature as it allows sharing and guarantees consistency
between the notes and the presentation.

Typeset results �is issue is related to the previous item. LATEX
can do basic arithmetic, can branch and iterate, and can
typeset the results of computations. For example, the lipsum
package provides a command\lipsum[〈number1〉-〈number2〉]
which typesets the ‘Lorem ipsum’ Paragraphs 〈number1〉
to 〈number2〉 and including. You can easily extend this com-
mand to make it repeat the paragraphs N times. As an-
other example, again consider the beamer class. It allows
you to generate several pages for your presentation from a
single frame environment. Within the frame you may have
a itemised list whose items are uncovered, one at a time, in
your presentation. �e uncovering results in several partial
and one �nal page for the single frame. As a �nal example,
the calctab package provides the basic functionality of a
spreadsheet with computation rules for output columns in
tables.

�e following are some disadvantages of LATEX commands, most of
which are inherited from TEX.

Commands and Environments 195

Number of arguments TEX sadly does not allow more than nine argu-
ments per macro. It may be argued that commands which require
more than nine arguments are not well-designed, but this does
not make the restriction less arbitrary.

Numbers as arguments �is disadvantage is probably the source of the
previous disadvantage. When implementing TEX, Knuth decided
to refer to formal arguments of macros as numbers. �e �rst
is called #1, the second is called #2, and so on. Needless to say
that this makes it extremely easy for TEX to parse and recognise
arguments, but this prevents programmers from giving meaning-
ful names to the arguments, makes it di�cult to understand the
implementation of the commands, and makes it easy to make
mistakes.

Flat namespace TEX allows local de�nitions at the group level but its
namespace is �at at the top level. As a consequence all the com-
mands which are de�ned at the top level are global. �is is ar-
guably the greatest problem. With thousands of packages and
classes this requires that package and class implementors have to
be careful to avoid name clashes.

10.2 User-de�ned Commands
�is section studies command de�nitions. Section 10.2.1 explains how
to de�ne and rede�ne commands that take no arguments. Section 10.2.2
explains how to de�ne and rede�ne commands that do take arguments,
and Section 10.2.3 explains the di�erence between �agile and robust
commands. Section 10.2.4 explains how to de�ne robust commands and
make existing commands robust.

10.2.1 De�ning Commands Without Arguments
LATEX has several ways to de�ne new commands. �e following are for
de�ning and rede�ning commands which take no arguments.

\newcommand〈cmd〉{〈subst〉}
�is de�nes a new command, 〈cmd〉, with substitution text 〈subst〉. In

TEX parlance 〈cmd〉 is called a command sequence. A LATEX command se-
quence starts with a backslash and is followed by a non-empty sequence
of symbols — usually letters. �e new command does not take any argu-
ments. �e substitution text 〈subst〉 is substituted for each occurrence
of 〈cmd〉 which is expanded by the Expansion Processor. �is does not
include all occurrences. For example 〈cmd〉 is not expanded if it occurs
in the substitution text of other LATEX de�nitions at de�nition time.
A more detailed description of the expansion of LATEX commands is
provided in Section 10.4.

\renewcommand〈cmd〉{〈subst〉}
�is rede�nes the command 〈cmd〉, which should be an existing com-

mand. �e resulting command has substitution text 〈subst〉 and does

196 Chapter 10

not take any arguments.
�e following is an example of a LATEX program which de�nes a

user-de�ned command \CTAN and uses it in the body of the document
environment.
\documentclass{article}
\newcommand{\CTAN}{Comprehensive \TeX{} Archive Network}
\begin{document}

I always download my packages from the \CTAN.
The \CTAN{} is the place to be.

\end{document}

LATEX Usage

�e substitution text of the command is ‘Comprehensive \TeX{}
Archive Network’. Given this de�nition LATEX substitutes the substi-
tution text ‘Comprehensive \TeX{} Archive Network’ for \CTAN each
time \CTAN is used. �e following is the resulting output.

I always download my packages from the Comprehen-
sive TEX Archive Network. �e Comprehensive TEX
Archive Network is the place to be.

LATEX Output

10.2.2 De�ning Commands With Arguments

De�ning commands with arguments is done in a similar way. �e follow-
ing are the relevant commands for de�ning commands without optional
arguments.

\newcommand〈cmd〉[〈digit〉]{〈subst〉}
As before, this de�nes a new command, 〈cmd〉, with substitution text
〈subst〉. �is time the command takes 〈digit〉 arguments. �e number
of arguments should be in the range 1–9. �e i -th formal argument is
referred to as #i in the substitution text 〈subst〉. When substituting
〈subst〉 for 〈cmd〉 TEX’s Expansion Processor also substitutes the i -th
actual argument for #i in 〈subst〉, for 1≤ i ≤ 〈digit〉. It is not allowed
to use #i in 〈subst〉 if i< 1 or 〈digit〉< i .

\renewcommand〈cmd〉[〈digit〉]{〈subst〉}
�is rede�nes 〈cmd〉 as a command with 〈digit〉 arguments and substi-
tution text 〈subst〉.

�e standard way to de�ne a command with an optional argument
is as follows. By default the optional argument can only be used in the
�rst position.

\newcommand〈cmd〉[〈digit〉][〈default〉]{〈subst〉}
�is de�nes a new command sequence, 〈cmd〉, with substitution text
〈subst〉. As before the command takes 〈digit〉 arguments. However,
this time the �rst argument (#1) is optional. If present it should be
enclosed in square brackets. If the optional argument is omitted then it
is assigned the value 〈default〉.

�e command \renewcommand may also be used to de�ne commands
with optional arguments. �is is done as follows: \renewcommand〈cmd〉

Commands and Environments 197

User-de�ned commands.
Figure 10.1 \usepackage{multind}

\makeindex{command}
\makeindex{package}

\newcommand{\MonoIdx}[2][command]{
\texttt{#2}%
\index{#1}{\texttt{#2}}%

}

\begin{document}
…The command
\MonoIdx{\textbackslash MakeRobustCommand}
is provided by the package
\MonoIdx[package]{makerobust}. …

\printindex{command}{Index of Commands}
\printindex{package}{Index of Packages}

\end{document}

[〈digit〉][〈default〉]{〈subst〉}.
�e LATEX program which is depicted in Figure 10.1 uses multiple

index �les and de�nes a user-de�ned command \MonoIdx which typesets
its second argument in monospaced font and writes information about
it to these index �les. �e optional argument is used to determine the
name of the index �le.

10.2.3 Fragile and Robust Commands
Having dealt with advantages and disadvantages of LATEX commands and
knowing how to de�ne them, we’re ready to study �agile and robust com-
mands. �e reason for studying them is that they are a common cause of
errors, which are caused by command side-e�ects. To make things worse
these errors may occur in subsequent LATEX sessions and at seemingly
unrelated locations. �ese errors are di�cult to deal with — especially
for novice users. Some of these issues are related to the notions of moving
arguments and �agile and robust commands. �e remainder of this sec-
tion explains how to deal with fragile commands in moving arguments
and avoid these common errors.

A moving argument of a command is saved by the command to be
reread later on. Examples of moving arguments are arguments which
appear in the Table of Contents, in the Table of Figures, in indexes, and
so on. For example, the \caption command which de�nes captions of
tables and �gures writes these captions to the list of tables (.lot) and list
of �gures (.lof) �les respectively. �e list of tables and list of �gures �les
are reread when LATEX typesets the list of �gures and the list of tables.

Moving arguments are expanded before they are saved. Sometimes
the expansion leads to invalid TEX being written to a �le. When this
invalid TEX is reread in a subsequent session this may cause errors.

198 Chapter 10

A command is called robust if it does expands to valid TEX. Other-
wise it is called �agile.

�e command \protect protects commands against expansion. If
\protect\command is saved then this saves \command. �is allows you to
protect fragile commands in moving arguments. In e�ect this postpones
the expansion of \command until it is reread.

10.2.4 De�ning Robust Commands
�e following commands are related to de�ning robust commands and
making existing commands robust.

\DeclareRobustCommand〈cmd〉{〈subst〉}
�is de�nes 〈cmd〉 as a robust command without arguments and substi-

tution text 〈subst〉.
\DeclareRobustCommand〈cmd〉[〈digit〉]{〈subst〉}

�is de�nes 〈cmd〉 as a robust command with substitution text 〈subst〉
and 〈digit〉 arguments.

\DeclareRobustCommand〈cmd〉[〈digit〉][〈default〉]{〈subst〉}
�is de�nes 〈cmd〉 as a robust command with substitution text 〈subst〉
and 〈digit〉 arguments, one of which is optional with default value
〈default〉.

\MakeRobustCommand〈cmd〉
�is turns the existing command 〈cmd〉 into a robust command. \MakeR-
obustCommand is not a standard command but is provided by the package
makerobust.

10.3 �e TEX Processors
Before studying how LATEX expands (evaluates) commands, this section
brie�y revisit the four processors which TEX is built upon. It is recalled
from Section 1.2.1 that these processors are run in a pipeline. �e fol-
lowing describes them. �e following description is based on [Eijkhout,
2007, Chapter 1].

Input Processor �e Input Processor turns TEX’s input stream into a
token stream, which is sent to the Expansion Processor.

Expansion Processor �e Expansion Processor turns its input token
stream into a token stream of non-expandable tokens. Among
others, the Expansion Processor is responsible for macro expansion
(command expansion) and decision making. �e resulting stream
is sent to the Execution Processor.

Execution Processor �e Execution Processor executes its input se-
quentially from start to �nish. Tasks which are carried out by
the Execution Processor are state-a�ecting assignments to TEX
registers (variables) and the construction of horizontal, vertical,
and math lists. �e resulting output lists are sent to the Visual
Processor.

Commands and Environments 199

Visual Processor �e Visual Processor does paragraph breaking, align-
ment, page breaking, mathematical typesetting, and .dvi genera-
tion. �e �nal output is the .dvi �le.

10.4 Commands and Arguments
�is section explains how LATEX applies commands to arguments. �rough-
out this section it is assumed that the input stream has been tokenised
by TEX’s Input Processor. At this stage there are two kinds of tokens:

Character tokens A character token represents a single character in the
input.

Control sequence tokens Control sequence tokens correspond to com-
mands. �ey represent a sequence of characters in the input start-
ing with a backslash and continuing with a sequence of other
tokens.

TEX’s Expansion and Execution Processors can distinguish between the
character and control sequence tokens, which makes it easy to recognise
tokens which correspond to commands.

It remains to explain how TEX parses arguments. �is is slightly
more di�cult. �ere are two kinds of arguments, which we shall refer to
as primitive and compound arguments.

Primitive Simple arguments consist of a single character or control
sequence token. �e tokens of the opening and closing brace are
not allowed.

Compound A compound argument corresponds to a brace-delimited
group in the input. �e token at the start of the group is that
of an opening brace ({) and that at the end of the group is that
of a closing brace (}). Within the sequence brace pairs should
be balanced. Most of the time you will use compound argu-
ments. �e value of a compound argument is the sequence of
tokens “in” the group, that is the sequence of tokens without the
tokens of its (�rst) opening brace and that of its (last) closing
brace [Knuth, 1990, pages 204–205]. For example, given a com-
mand \single that takes one single argument, the actual parame-
ter of ‘\single{ ab{c}}’ is given by ‘ ab{c}’.

�e remainder of this section provides examples of command ex-
pansion. We shall start with a simple example which involves primitive
arguments only, and continue with a more complex example which in-
volves both primitive and compound arguments.

�e following should explain what is going on with primitive argu-
ments. Let’s assume we have two user-de�ned commands called \swop
and \SWOP which are de�ned as follows.

200 Chapter 10

A program with user-de�ned
combinators.

Figure 10.2 \documentclass{article}

\newcommand\K[2]{#1}
\newcommand\S[3]{#1#3{#2#3}}
\newcommand\I{\S\K\K}
\newcommand\X{\S{\K{\S\I}}{\S{\K\K}\I}}

\begin{document}
\X abc

\end{document}

\newcommand\swop[2]{#2#1}
\newcommand\SWOP[2]{#2#1}

LATEX Usage

Both commands do the same but, for sake of the example, they’ve
been given di�erent names. �ey take two arguments and ‘output’
(rewrite them to) the second argument followed by the �rst. Having
de�ned these commands, ‘\swop2\SWOP31’ now give us ‘321’. To see what
has happened, notice that the �rst argument of the command \swop is
the character token which corresponds to the character ‘2’ and notice
that the second argument is the command sequence token which corre-
sponds to the ‘\SWOP’ in the input. Expanding ‘\swop3\SWOP’ reverses the
order of the arguments giving us the token sequence ‘\SWOP231’. Expand-
ing this token sequence gives us ‘321’, which is completely expanded,
cannot be expanded any further, and completes the rewriting process.

�e following is a more complex example. Let’s assume we have the
LATEX program which is listed in Figure 10.2. �e program de�nes four
commands \K, \S, \I, and \X. �e �rst three commands correspond to
the combinators K, S, and I from Moses Schön�nkel and Haskell Curry’s
combinatory logic. �ey may be describes as follows: K〈A〉〈B〉 7→ 〈A〉,
S〈A〉〈B〉〈C〉 7→ 〈A〉〈C〉(〈B〉〈C〉), and I 7→ SKK. If you study the TEX
de�nition of the command \X you may notice that it does not have any
formal arguments. It may therefore come as a surprise that it correspond
to a combinator, X, which swops its arguments, i.e. X〈A〉〈B〉 7→ 〈B〉〈A〉.
Still this makes perfect sense and the remainder of this section explains
why.

Knowing that \X corresponds to a combinator which swops its ar-
guments we should be able to predict the output of our program — it
should be ‘bac.’ Let’s see if we can explain this properly. Table 10.1 illus-
trates the expansion process. �e second column of the table lists the
output of the Expansion Processor, the third column lists the current
input stream of the Expansion Processor, and the �rst column lists the
number of the reductions. �e subscripts of the tokens in the input
stream correspond to the nesting level of the groups.

�e �rst reduction is that of \X to its substitution text. It does
not involve any argument. Reduction 2 is a reduction of the form
\S〈A〉〈B〉〈C〉 7→ 〈A〉〈C〉{〈B〉〈C〉}, where 〈A〉 and 〈B〉 correspond to the

Commands and Environments 201

TEX’s Expansion Processor.
�e output and the input
of the Expansion Processor
are listed in the second and
third column. �e numbers
of the reductions are listed
in the �rst column. Each to-
ken in the input has a sub-
script which corresponds to
the nesting-level of groups.

Table 10.1 # Out In

1 \X1a1b1c1
2 \S1 {1\K2{2\S3\I3}2}1 {1\S2{2\K3\K3}2\I2}1 a1b1c1
3 \K1{1\S2\I2}1a1{1\S2{2\K3\K3}2\I2a2}1b1c1
4 \S1\I1{1\S2{2\K3\K3}2\I2a2}1b1c1
5 \I1b1{1\S2{2\K3\K3}2\I2a2b2}1c1
6 \S1\K1\K1b1{1\S2{2\K3\K3}2\I2a2b2}1c1
7 \K1b1{1\K2b2}1{1\S2{2\K3\K3}2\I2a2b2}1c1
8 b1{1\S2{2\K3\K3}2\I2a2b2}1c1
9 b {1\S2{2\K3\K3}2\I2a2b2}1c1

10 b \S2{2\K3\K3}2\I2a2b2}1c1
11 b \K2\K2a2{2\I3a3}2b2}1c1
12 b \K2{2\I3a3}2b2}1c1
13 b \I2a2}1c1
14 b \S2\K2\K2a2}1c1
15 b \K2a2{2\K3a3}2}1c1
16 b a2}1c1
17 ba }1c1
18 ba c1

bac

top-level groups in the input and 〈C〉 corresponds to the character token
which represents the lower case letter ‘a.’ Removing the opening and
closing brace tokens of the groups and applying the reduction gives us the
input of Reduction 3. �e third reduction is of the form \K〈A〉〈B〉 7→ 〈A〉
where both 〈A〉 and 〈B〉 are groups. Removing the second group, remov-
ing the opening and closing brace tokens of the �rst group, and applying
the reduction gives us the input of Reduction 4. All remaining reduc-
tions are similar except for Reduction 9 and 17, which correspond to
entering a group and leaving the group. �e �nal result is listed in the
last row. It should give con�dence that the output is ‘bac’ as expected.

10.5 De�ning Commands with TEX
In this section we shall study how to de�ne LATEX commands using plain
TEX. TEX allows a richer variety of commands than LATEX. �e main
di�erences are that TEX commands come in local and global �avours.
In addition they may be de�ned with delimiters in their argument list.
Usually, you should not need TEX command de�nitions but sometimes
they are needed. �e best thing to do is de�ne commands using LATEX
commands and only de�ne commands with TEX as a �nal resort.

�e following are TEX’s commands for de�ning commands without
delimiters.

\def〈cmd〉#1#2…#n{〈subst〉}
�is de�nes a command, 〈cmd〉, with n arguments, and with substitution

202 Chapter 10

text 〈subst〉. �e command is local to the group in which it is de�ned.
�e numbers in the formal parameter list must contain the numbers
1–n, in increasing order. �is restriction holds for all TEX command
de�nitions.

\edef〈cmd〉#1#2…#n{〈subst〉}
�is de�nes a command, 〈cmd〉, with n arguments, and substitution text

which is the expansion of 〈subst〉. It should be noted that 〈subst〉 is
expanded at the time at which 〈cmd〉 is de�ned. �e command is local
to the group in which it is de�ned.

�e following should explain how the commands \def and \edef
work. Given the de�nitions in the following listing ‘\hello{} \ehello’
gives us ‘HI hi’.
\def\hi{hi}
\def\hello{\hi}
\edef\ehello{\hi}
\def\hi{HI}

LATEX Usage

Commands which are de�ned using \def or \edef are not allowed
to have paragraph breaks. To allow paragraph breaks in arguments you
add the pre�x \long to \def or \edef.

As stated in the explanation of TEX macro de�nitions, commands
may be de�ned locally in a group. What is more, they may also be de�ned
locally within other macro de�nitions. Formal parameters in macro
de�nitions which are nested inside other de�nitions receive an extra ‘#’
character to distinguish them from the formal parameters of the nesting
macro de�nition(s). Using this mechanism and the de�nition in the
following listing ‘\silly01’ gives us ‘!0!1!’.
\def\silly#1#2{%

\def\sillier##1{!##1!#2!}\sillier{#1}%
}

LATEX Input

�e following commands are useful when de�ning low-level com-
mands with TEX.

\csname 〈tokens〉\endcsname
�is results in the command sequence of the expansion of 〈tokens〉. In

e�ect this expands 〈tokens〉 and puts a backslash character to the front
of the result. For example, \csname command\endcsname gives \com-
mand. To see why expansion matters, let’s assume we have the de�nition
\def\ho{Ho}. With this de�nition \csname Ho\ho\ho\endcsname gives
us \HoHoHo.

\noexpand〈token〉
�is results in 〈token〉 without expanding it. For example, the de�ni-

tions of the commands\def\hello{\hi} and \edef\hello{\noexpand\hi}
are equivalent regardless of the de�nition of \hi.

\expandafter〈token〉〈tokens〉
�is expands the �rst token in 〈tokens〉 (using arguments if required)
and inserts 〈token〉 before the result.

Commands and Environments 203

De�ning commands with de-
fault arguments.

Figure 10.3 % allow @ in macro names
\makeatletter%
\def\cmd#1{%

\@ifnextchar[%
% use the given option
{\cmd@relay{#1}}%
% use the default option
{\cmd@relay{#1}[dflt]}%

}
\def\cmd@relay#1[#2]{…}
% disallow @ in macro names
\makeatother

\makeatletter
\def\cmd#1{%

\def\cmd@relay##1[##2]{…}
\@ifnextchar[%

{\cmd@relay{#1}}%
{\cmd@relay{#1}[dflt]}%

}
\makeatother

�e command \expandafter is frequently used in combination with
\csname to construct de�nitions with parameterised names. �e follow-
ing example demonstrates this mechanism. �e \expandafter allows
\csname and \endcsname construct the command sequence name before
applying the \def command.
\documentclass{article}
\def\property#1{%

\expandafter\def%
\csname#1\endcsname##1{%

##1\ is #1}%
}
\property{brilliant}
\property{excellent}
\begin{document}

\excellent{\TeX} and
\brilliant{\LaTeX}.

\end{document}

TEX is excellent and LATEX is bril-
liant.

TEX also allows commands with delimiters in argument lists. For
example, it lets you implement a command \command which uses the
character ‘|’ to delimit its two arguments. �is allows you to apply the
command to one and two by writing \command|one|two|. Using TEX
you de�ne a command like this as follows.
\def\command|#1|#2|{…} LATEX Usage

More complex delimiters are also allowed. For example, combina-
tions of letters, spaces, and command sequences are valid delimiters, even
if the command sequences do not correspond to existing commands. It
is also not required that all arguments be delimited or that all delimiters
be equal.

Figure 10.3 provides two di�erent implementations of a contrived
command which has one default argument. In LATEX terms the example
de�nes a user-de�ned LATEX command which takes two parameters. �e
second argument is optional with default ‘dflt.’

204 Chapter 10

Let’s �rst study the solution to the le�. �ere are two new aspects
to this solution. �e �rst is the use of the commands \makeatletter
and \makeatother. �e command \makeatletter allows ‘@’ symbols in
command names. �e command \makeatother disallows them. �is
is a common idiom as it lets you — with high probability — de�ne
command sequences which are unique. �e second new aspect is the use
of \@ifnextchar〈character〉〈first〉〈second〉 which looks ahead to
see if the next character is equal to 〈character〉 without consuming it.
It results in 〈first〉 if the next character is 〈character〉 and results in
〈second〉 otherwise. In the solution to the le� the user-de�ned command
\cmd looks ahead to see the token following the �rst argument, and passes
control to the command \cmd@relay with the proper option.

�e solution to the right is similar but it de�nes the relay command
locally. It is recalled that formal parameters of nested macro de�ni-
tions receive extra ‘#’ characters. �erefore, the formal parameters of
\cmd@relay are now ##1 and ##2. Using this mechanism should allow
you to refer to both the formal parameters of \cmd and the formal pa-
rameters of \cmd@relay inside the substitution text of \cmd@relay.

Candidate delimiters inside matching brace pairs are ignored. For
example, lets assume we have the following de�nition.
\def\agoin{ old chap}
\def\hows#1\agoin{How are you #1?}

LATEX Usage

�en ‘\hows{Joe\agoin}\agoin’ gives ‘How are you Joe old chap?’.

10.6 Tweaking Existing Commands with \let

�is section studies how to tweak existing commands, i.e. rede�ne an
existing command in such a way that it carries out an additional task.
To do this we are going to use TEX’s \let command by assigning the
meaning of the original command to a scratch command sequence. Next
we rede�ne the existing command and refer to the scratch command
sequence when we want to carry out the task which was associated with
the original command. In the example in Figure 10.4 we rede�ne the
\section command and force it to take one more argument, which is the
label of the section. �e resulting command �rst uses the original \sec-
tion command to de�ne the section and next uses the \label command
to de�ne the label.

10.7 More than Nine Arguments
As mentioned in Section 10.1, LATEX does not allow you to have more
than nine arguments. �is section describes two techniques which helps
you to overcome this problem. Both techniques exploit the fact that
TEX allows local de�nitions of commands.

To illustrate the solutions we shall implement a command \command
which takes ten arguments and outputs their values. �e �rst technique

Commands and Environments 205

A sectionl unit environment.
Figure 10.4 \makeatletter

% Save meaning of old \section command.
\let\old@section=\section
\def\section#1#2{%

% Define section using old \section command.
\old@section{#2}
% Define label for the section.
\label{#1}

}
\makeatother

Using more than nine argu-
ments.

Figure 10.5 \makeatletter
\def\cmd#1#2#3#4#5#6#7#8#9{%

\def\cmd@arg@A{#1}%
\def\cmd@arg@B{#2}%
...
\def\cmd@arg@I{#9}%
\relay%

}
\def\relay#1{%

\def\cmd@arg@J{#1}%
Arguments: \cmd@arg@A, \cmd@arg@B, …, and \cmd@arg@J.%

}
\makeatother

is to implement \command as a wrapper command which does two things.

• It formally de�nes nine local commands. �e i -th local command
results in the value of the i -th argument of \command.

• It passes control to a ‘relay’ function which can see the remaining
argument.

Figure 10.5 demonstrates the technique. �e second technique is sim-
pler and implements \relay as a local macro. �e following demonstrates
the technique.
\def\cmd#1#2#3#4#5#6#7#8#9{%

\def\relay##1{Arguments: ##1, ##2, …, and #1.}%
\relay%

}
\makeatother

LATEX Usage

10.8 Introduction to Environments
�is section is about environments. �e following are a few reasons in
favour of environments.

206 Chapter 10

User-de�ned environment.
Figure 10.6 \newcommand{\endOfSectionCommand}{…}

\newenvironment{SectionalUnit}[2][section]
{\csname#1\endcsname{#2}}
{\endOfSectionCommand}

\begin{document}
\begin{SectionalUnit}[chapter]{Introduction}

\begin{SectionalUnit}{Conventions}
…

\end{SectionalUnit}
\begin{SectionalUnit}{Notation}

…
\end{SectionalUnit}

\end{SectionalUnit}
...

\end{document}

Declarativeness Arguably, using an environment is more declarative
than using a command.

Less ambiguity If commands with arguments are used as part of other
commands with arguments then this may make it di�cult to see
which closing brace belongs to which command. If environments
are used inside other environments then it is easier to see which
\begin{〈env〉} belongs to which \end{〈env〉}, thereby resolving
the ‘brace ambiguity’.

Allows Paragraphs You can have paragraphs inside environments.

More E�cient Environments can be implemented without the need of
extra stack space. �is makes their implementation more e�cient
than macros.

10.9 Environment De�nitions
�is section studies how to de�ne user-de�ned environments. �e key
to de�ning environments is the command \newenvironment, which is
used as follows.

\newenvironment{〈name〉}{〈begin subst〉}{〈end subst〉}
�is de�nes a new global environment which is called 〈name〉. When

you write \begin{〈name〉}〈body〉\end{〈name〉} the text 〈begin subst〉 is
substituted for \begin{〈name〉} and the text 〈end subst〉 is substituted
for \end{{〈name〉}}. E�ectively, this gives you 〈begin subst〉〈body〉
〈end subst〉.

\newenvironment{〈name〉}[〈digit〉]{〈begin subst〉}{〈end subst〉}
�is de�nes a new global environment 〈name〉 with 〈digit〉 arguments.

In addition to the mechanism for environments without arguments there

Commands and Environments 207

is now also argument substitution. However, argument substitution only
works within 〈begin subst〉. �is works just as for commands, so the i -
th actual argument of the environment is substituted for the i -th formal
argument, #i , in 〈begin subst〉. It is not allowed to refer to formal
arguments in 〈end subst〉.

\newenvironment{〈name〉}[〈digit〉][〈default〉]{〈begin subst〉}{〈end subst〉}
�is de�nes a new global environment which is called 〈name〉 and takes
〈digit〉 arguments, the �rst of which is optional.

�e command \renewenvironment is for rede�ning environments.
It works as ‘expected’.

Figure 10.6 presents an example of a user-de�ned environment which
takes two arguments, one of which is optional. It is le� as an exercise to
the reader to determine how the resulting environment works.

208 Chapter 10

Chapter 11
Option Parsing

This short chapter discusses two packages for implementing
‘〈key〉=〈value〉’ macro interfaces. �ey overcome several problems with
LATEX’s argument mechanism. Using this technique you can implement a
command called \figure that takes optional arguments which describe a
rotation angle and a scale for the resulting �gure. �e resulting command
may be used as \figure[angle=90,scale=2]{mypicture.pdf}. We shall
�rst study the more rudimentary keyvalpackage. Next we shall continue
studying keycommand package, which is more recent and much easier to
use. �e main reasons for studying the keyval package is that it is used
a lot, and that studying it provides some insight in what is required to
implement the required functionality. Before studying the packages, we
shall study the motivation for using ‘〈key〉=〈value〉’ interfaces.

11.1 Why Use a 〈Key〉=〈Value〉 Interface?
We’ve already seen that LATEX’s argument handling mechanism is not
ideal. �e following are some arguments in favour of 〈key〉=〈value〉
interfaces.

Number of arguments �ere is no limit to the number of arguments.

Robustness �e mechanism is more robust. �e arguments can be sup-
plied in any order. For example, ‘\compare[apples=4,oranges=5]’
and ‘\compare[oranges=5,apples=4]’ should do the same. De-
fault values can be de�ned for missing arguments.

Interface By relating the value to the key, the purpose of the argument
is clear. �is makes the interface clearer and easier to use.

Names �e mechanism reduces references to the meaningless formal
parameter names ‘#1’, ‘#2’, …. Instead it allows the programmer to
get the value of a speci�c key.

11.2 �e keyval Package
At the time of writing the keyval package [D. Carlisle, 1999b] is one
of the more commonly used packages for implementing 〈key〉=〈value〉

209

210 Chapter 11

interfaces.

To study the keyval package we shall implement a contrived com-
mand \compares[apples=〈apples〉,oranges=〈oranges〉]{〈name〉}. �e
task of the command is to typeset the text ‘〈name〉 compares 〈apples〉
apples with 〈oranges〉 oranges’. �e �rst argument of the command
should be truly optional. In addition, the command should be �exi-
ble/robust: the order of the 〈key〉=〈value〉 pairs shouldn’t matter and
it shouldn’t be required to list them all. �e default value for 〈apples〉
is 2 and the default value for 〈oranges〉 is 3. So ‘\compares[apples=9]
{Mary}’ should result in the text ‘Mary compares 9 apples with 3 oranges’
and ‘\compares[oranges=2,apples=2]{Peter}’ should result in ‘Peter
compares 2 apples with 2 oranges’. �roughout we shall assume that the
@ symbol is allowed in command sequence names.

We start by importing the keyval package and by de�ning the de-
fault values. Next we use the \define@key{〈family〉}{〈key〉}{〈action〉}
command to inform keyval about the existence of the key apples and
the key oranges. �e command \define@key is provided by the keyval
package. Its 〈family〉 argument tells keyval about the family of keys.
Here the family corresponds to the keys for our speci�c application. By
introducing di�erent families, you can use the same key in di�erent fami-
lies but with di�erent rules for dealing with the key. �e 〈key〉 argument
of \define@key speci�es the name of the key, and the 〈action〉 speci-
�es what to do with the value for the given 〈key〉. Inside the 〈action〉
argument, #1 represents the actual value for the given 〈key〉 in an actual
〈key〉=〈value〉 list. In both cases we let the 〈action〉 parameter override
the default value for 〈key〉.

\usepackage{keyval}
\def\compares@apples{2}
\def\compares@oranges{3}
\define@key{compares}{apples}%

{\def\compares@apples{#1}}
\define@key{compares}{oranges}%

{\def\compares@oranges{#1}}

LATEX Usage

Having informed keyval about the keys and what to do with them,
the rest is straightforward. �e following listing de�nes our command
\compares. All it does is insert an empty 〈key〉=〈value〉 list if there is no
〈key〉=〈value〉 list and forward control to a command called \@com-
pares which does the actual work. We used a similar technique as
on Page 203 in Section 10.5. �e command \@compares is relatively
straightforward. It starts by parsing the 〈key〉=〈value〉pairs in the square
bracket-delimited argument. �is is done with the \setkeys command,
which is provided by keyval. Having determined the 〈value〉s for the
〈key〉s, all that remains is the typesetting.

Option Parsing 211

\def\compares{%
\@ifnextchar[%

{\@compares}%
{\@compares[]}}

\def\@compares[#1]#2{%
{\setkeys{compares}{#1}%
#2\ compares \compares@apples˜apples
with \compares@oranges˜oranges.}}

LATEX Usage

Note the extra group within the \@compares command. Its main
purpose is keeping the re-de�nitions of the keys local. An alternative
solution is to use local macros to de�ne the default values of the keys
and then use \setkeys to assign the provided values.

11.3 �e keycommand Package
�is section studies a recent alternative to the keyval package: the key-
command package. Essentially, keycommand provides a high-level mecha-
nism for de�ning macros and environments with 〈key〉=〈value〉 inter-
faces. �e following are the building blocks.

\newkeycommand{〈command〉}[〈key-value list〉][〈number〉]{〈definition〉}
�is de�nes a new command 〈command〉 that takes 〈number〉 regular ar-

guments and one optional argument and substitution text 〈definition〉.
�e optional argument is a lis of 〈key〉=〈value〉 pairs, the keys and de-
fault values of which are listed in 〈key-value list〉. For each key 〈key〉
and default value 〈default〉, the argument 〈key-value list〉 should
have an entry of the form ’〈key〉=〈default〉’. Inside the 〈definition〉
you use \commandkey{〈key〉} to get the actual value for for the 〈key〉.
�e following implements our command \compares.
\newkeycommand{\compares}[apples=3,oranges=2][1]{%

#1\ compares \commandkey{apples}˜apples
with \commandkey{oranges}˜oranges.}

LATEX Usage

\newkeyenvironment{〈name〉}[〈key-value list〉][〈number〉]{〈start〉}{〈end〉}
�is de�nes a new environment 〈name〉 with begin and end substitution
text 〈begin〉 and 〈end〉. �e remaining arguments are similar to the
arguments of \newkeycommand.

�e keycommand package also provides commands for rede�ning
commands and environments. �e reader is referred to the package
documentation[Chervet, 2009] for further information.

212 Chapter 11

Chapter 12
Branching

This chapter is devoted to decision making, and branching. �e
techniques in this chapter allow you to implement the equivalent of if
and while clauses in LATEX. �is gives you ultimate control over the style
and content of your documents.

�e remainder of this chapter is as follows. Section 12.1 studies
counters, Boolean variables, and lengths. Section 12.2 demonstrate
how to implement if and while statements with the ifthen package.
Section 12.4 studies the use of for loops in LATEX. Section 12.5 concludes
this chapter by demonstrating how to implement tail-recursion in low-
level TEX.

12.1 Counters, Booleans, and Lengths
�is section provides an introduction to counters, Boolean variables,
and length-related commands. �e reason for studying them is that they
play the rôle of variables in LATEX and TEX.

12.1.1 Counters
A LATEX counter is a global variable for counting things. �e following
are the commands related to LATEX counters.

\newcounter{〈name〉}
�is de�nes a new global counter. �ere a counter is a LATEX variable that
can take integer values. It is not quite clear which range is allowed for
counters, except that (some) positive, (some) negative, and (all!) zero
values are allowed. �e initial value of the counter is zero. According
to Lamport, the command \newcounter may not be de�ned in �les
which are \included [Lamport, 1994, Page 138]. You may only use the
command is the document preamble [Lamport, 1994, Page 99], but I’ve
noticed that putting it elsewhere is also allowed.

\setcounter{〈name〉}{〈value〉}
�is assigns the value 〈value〉 to the counter 〈name〉. Here 〈name〉 should
be the name of an existing counter and 〈value〉 should be an integer
constant.

\stepcounter{〈name〉}
�is increments the counter 〈name〉by one. As with \setcounter, 〈name〉

213

214 Chapter 12

should be the name of an existing counter.
\addtocounter{〈name〉}{〈increment〉}

�e adds the constant 〈inc〉 to the counter 〈name〉. As before, 〈name〉
should be the name of an existing counter and 〈value〉 should be an
integer constant.

\the〈name〉
�is gives you the value of the counter 〈name〉, which should be the

name of an existing counter. Here \the〈name〉 is the concatenation of
‘\the’ and ‘〈name〉’. For example, the counter section is used in LATEX for
counting the current section number, and the command \thesection
gives you the number of the current section.

\newcounter{〈slave〉}[〈master〉]
�is de�nes a slave counter 〈slave〉 which depends on master counter
〈master〉, which should be an existing counter. Here, a slave counter of
a master counter is a counter which is numbered “within” the master
counter. For example, the subsection counter is a slave counter of the
master counter section. If 〈master〉 is incremented using the \step-
counter command, then the counter 〈slave〉 is automatically reset. �is
process also recursively resets slave counters of 〈slave〉. �is version of
the \newcounter command is useful for implementing counter hierar-
chies.

�e following example demonstrates these counter-related com-
mands, except for the version of \newcounter with the optional argu-
ment.
\newcounter{answer} % define answer
\setcounter{answer}{9} % assign 9 to answer.
\addtocounter{answer}{11} % add 11 to answer
\stepcounter{answer} % increment answer
\addtocounter{answer}{\theanswer} % double answer

\begin{document}
The answer is˜\theanswer.

\end{document}

LATEX Usage

12.1.2 Booleans
LATEX does not support decision making. To make decisions you need
TEX or use a package such as ifthen. In the remainder of this section we
shall study TEX’s way of decision making. �e ifthen package is studied
in Section 12.2.

\newif\if〈bool〉
�is is TEX’s way to de�ne a branching command called \if〈bool〉. You
may regard it as the de�nition of an arti�cial Boolean variable called
〈bool〉. For example, you may de�ne a Boolean “variable” ‘notes’ with
the command ‘\newif\ifnotes’.

\〈bool〉true
�is is equivalent to assigning true to the Boolean “variable” 〈bool〉.

Branching 215

Length units.
Table 12.1 Unit Name Equivalent

pt point
pc pica 1pc= 12pt
in inch 1in= 72.27pt
bp big point 72bp= 1in
cm centimetre 2.54cm= 1in
mm millimetre 10mm= 1cm
dd didôt point 1157dd= 1238pt
cc cicero 1cc= 12dd
sp scaled point 65536sp= 1pt

\〈bool〉false
�is is equivalent to assigning false to the Boolean “variable” 〈bool〉.

\if〈bool〉〈then clause〉\fi
�is is TEX’s equivalent of a conditional statement. As expected this

results in 〈then clause〉 if the value of the Boolean “variable” 〈bool〉 is
true.

\if〈bool〉〈then clause〉\else〈else clause〉\fi
�is is the equivalent of an if-else statement. It results in 〈then
clause〉 if the value of the Boolean “variable” 〈bool〉 is true and re-
sults in 〈else clause〉 otherwise.

�e following is an example that creates a section. �e title of the
section depends on the value of the boolean variable notes. If notes
is true then the title is set to ‘Lecture Notes’. Otherwise, the section is
titled ‘Presentation’. �is example can be taken further to implement a
context-sensitive document the style and content of which depends on
the values of Boolean variables.
\newif\ifnotes
\notestrue

\begin{document}
\section{\ifnotes Lecture Notes%

\else Presentation%
\fi}

…
\end{document}

LATEX Usage

12.1.3 Lengths
�is chapter studies length variables, which are LATEX/TEX variables that
can be assigned measures of distance. �ey are also be used for decision
making. �is section is mainly based on [Lamport, 1994, Section 6.4].

LATEX has a wide range of length (measure) units. Table 12.1 lists
them all. Each length unit represents its own length. Writing ‘1〈unit〉’
gives you the length of the unit 〈unit〉. For example ‘1mm’ gives you

216 Chapter 12

the length of one millimetre. Likewise you multiply 〈unit〉 by any con-
stant 〈constant〉 by writing ‘〈constant〉〈unit〉’. For example, ‘101in’ is
equivalent to ‘256.54cm’.

Length variables hold length values. �ey are denoted as command
sequences. Given length variable 〈len〉, 2〈len〉 gives you twice its current
value.

�ere are two kinds of lengths: rigid and rubber. �e following
explains the di�erence between the two.

Rigid A rigid length which always gives you the same length.

Rubber A rubber length is a combination of length and elasticity. �eir
values may stretch or shrink depending on the situation. �is is
useful for stretching/shrinking inter-word space and so on. Mul-
tiplying a rubber length makes it rigid, so 1.0\rubber gives you a
rigid length which is the equivalent of the length value of \rubber.

�e following are some of LATEX’s length-related commands. By
de�ning your formatting commands in terms of these commands you
can make them work regardless of the current document settings.

\parindent
�is length variable stores the amount of indentation at the beginning

of a normal paragraph.
\textwidth

�is length variable stores the width of the text on the page.
\textheight

�is length variable stores the height of the body of a page, excluding
the head and foot space.

\parskip
�is length variable stores the extra vertical space between paragraphs.
�is is a rubber length with a natural length of zero. With this setting
the vertical space which is cause by \parskip usually does not result in
additional inter-paragraph spacing. However, it does allow the length to
stretch if the \flushbottom declaration is in e�ect.

\baselinekip
�is length variable stores the vertical distance from the bottom of one

line in a paragraph to the bottom of the next line in the same paragraph.

�e following are LATEX’s length-related commands.
\newlength{〈command〉}

�is de�nes the length command 〈command〉 with an initial value of 0cm.
For example, the command \newlength{\mylen} de�nes a new length
called \mylen.

\setlength{〈command〉}{〈length〉}
�is assigns the length value 〈length〉 to the length command 〈command〉.
For example, the command \setlength{\parskip}{1.0mm} assigns the
value 1mm to \parskip.

Branching 217

\addtolength{〈command〉}{〈length〉}
�is adds the length value 〈length〉 to the current value of the length
〈command〉. For example, the spell \addtolength{\parskip}{1.0mm}
adds a millimetre to \parskip.

\settowidth{〈command〉}{〈stuff〉}
�is assigns the width of 〈stuff〉 to 〈command〉. For example, the com-
mand \settowidth{\twoms}{MM} assigns twice the width of the text
‘MM’ to \twoms.

\settoheight{〈command〉}{〈stuff〉}
�is assigns the height of 〈stuff〉 to 〈command〉. For example, the com-

mand \settoheight{\tower}{$2ˆ{2ˆ2}$} assigns the height of ‘222 ’ to
\tower.

\settodepth{〈command〉}{〈stuff〉}
�is assigns the depth of 〈stuff〉 to 〈command〉. For example, the com-

mand \settodepth{\parskip}{amazing} sets the value of \parskip to
the distance the letter ‘g’ extends below the line.

�e commands \setlength and \addtolength obey the normal
scoping rules.

12.1.4 Scoping

�is section brie�y explains the di�erence between the scoping rules
for assignments to counters, TEX Booleans, and lengths. Counters are
global which is to say that the values of counter variables are not restored
upon leaving a group. TEX Booleans and lengths satisfy group scoping
rules, which means that upon leaving a group these variables are assigned
the same values which they had upon entering the group.

12.2 �e ifthen Package
�is section studies the ifthenpackage, which provides the functionality
of de�ning Boolean variables at the LATEX level, decision making, and
branching. �ere are two commands for de�ning new Boolean variables.

\newboolean{〈bool〉}
�is de�nes a new global Boolean variable. the command will fail if
〈bool〉 is already de�ned.

\provideboolean{〈bool〉}
�is also de�nes a new global Boolean variable. However, this command
will accept 〈bool〉 if it is already de�ned.

\setboolean{〈bool〉}{〈value〉}
�is assigns the value 〈value〉 to 〈bool〉. Here 〈value〉 should be true
or false.

Knowing how to de�ne Boolean variables we can proceed with mak-
ing decisions. �e command \ifthenelse{〈test〉}{〈then clause〉}{
〈else clause〉} is a two-way branching construct. As expected it carries
out 〈then clause〉 if 〈test〉 evaluates to true and carries out 〈else

218 Chapter 12

clause〉 if 〈test〉 evaluates to false. �e condition 〈test〉 must be of
the following form:

〈boolean〉
Here 〈boolean〉 should be ‘true’ or ‘false’, ignoring case, so ‘true’,

‘truE’, …, ‘TRUe’, and ‘TRUE’ are equivalent, and so are ‘false’, ‘falsE’, …,
‘FALSe’, and ‘FALSE’.

〈number1〉〈op〉〈number2〉
Here 〈number1〉 and 〈number2〉 should be numbers and 〈op〉 should be

‘<’, ‘=’, or ‘>’.
\lengthtest{〈dimen1〉〈op〉〈dimen2〉}

Here 〈dimen1〉 and 〈dimen2〉 should be dimension values and 〈op〉 should
be ‘<’, ‘=’, or ‘>’.

\isodd{〈number〉}
As suggested by the notation 〈number〉 should be a number.

\isundefined{〈command〉}
Here 〈command〉 should be a command sequence name.

\equal{〈string1〉}{〈string2〉}
Here 〈string1〉 and 〈string2〉 are evaluated and compared for equality.
�e test is equivalent to true if and only if the results of the evaluations
are equal.

\boolean{〈bool〉}
Here 〈bool〉 should be a Boolean variable.

〈test1〉〈command〉〈test1〉
Here 〈test1〉 and 〈test2〉 should be valid 〈test〉 conditions and 〈command〉
is \or, \and, \OR, or \AND. �e versions \OR and \AND are preferred to \or
and \and as they are more robust.

〈negation〉〈test〉
Here 〈test〉 should be a valid 〈test〉 condition and 〈negation〉 should

be ‘\not’ or ‘\NOT’. �e upper case version is preferred to the lower case
version.

\(〈test〉\)
Here 〈test〉 should be a valid 〈test〉 condition.

�e following example demonstrates how to use the \ifthenelse
command. �e page counter variable, which is used in the example,
keeps track of LATEX’s page numbers.
\usepackage{ifthen}

\begin{document}
\ifthenelse{\isodd{\value{page}}}%

{We’re on an odd page.}%
{The page is even.}

\end{document}

LATEX Usage

�e command \whiledo{〈test〉}{〈statement〉} is ifthen’s equiva-
lent of the while statement. It repeatedly ‘executes’ 〈statement〉 while
〈test〉 evaluates to true. �e following example demonstrates some of
the functionality of the ifthen package.

Branching 219

\usepackage{ifthen}
\newcounter{counter}
\setcounter{counter}{5}

\begin{document}
\[

\thecounter = 0
\whiledo

{\not\(\thecounter=0\)}%
{+1\addtocounter{counter}{-1}}\,.

\]
\end{document}

LATEX Usage

�e resulting output is ‘5= 0+ 1+ 1+ 1+ 1+ 1 .’.

12.3 �e calc Package

�e calc package extends TEX and LATEX’s arithmetic. �e calc package
rede�nes the commands \setcounter, \addtocounter, \setlength, and
\addtolength. As a result, these commands now accept in�x expressions
in their arguments. In addition the package provides useful commands
such as \widthof{〈stuff〉}, \ratio{〈dividend〉}{〈divisor〉}, and so
on, which don’t have a LATEX equivalent. �e interested reader is referred
to the package’s excellent documentation [Krab �orub, Jensen and
Rowley, 2005].

12.4 Looping

�e LATEX kernel provides two kinds of for statements.
\@for \var:=〈list〉\do \command

Here 〈list〉 is a comma-delimited list. �e items in 〈list〉 are bound
to \var from le� to right. A�er each binding, the command \command
is carried out. (Of course, \command can also be a group.) As a simple
example, ‘\@for \var:=1,two\do{(\var)}’ gives ‘(1)(two)’. Notice that
it is imperative that the symbol ‘@’ is allowed in command sequence
names. (�e example in Figure 10.3 explains how to enable this.)

\@tfor\var :=〈list〉\do \command
�is is the ‘token’ version of the \@for command. In this case 〈list〉

is a list of tokens. �e tokens in 〈list〉 are bound to \var from le� to
right. A�er each binding, the command \command is carried out. �e
following LATEX input gives us ‘12332’.

\def\swop#1#2{#2#1}
\@tfor\var:=1\swop\do{\var23}

LATEX Input

220 Chapter 12

A tail recursion-based imple-
mentation of a lisp-like \ap-
ply command.

Figure 12.1 \documentclass[12pt]{article}

% \apply\cmd items\endApply:
% applies \cmd to each item in items, so
% \apply\twice a{bc}\endApply gives aabcbc.
\def\apply#1{%

\def\Apply##1{%
\ifx##1\endApply%

% The current argument is \endApply.
% The following substitutes \fi for
% the current substitution text of \Apply,
% i.e. all tokens up to \Apply.
\breakApply%

\fi%
#1{##1}% Apply \cmd to next item.
\Apply% Tail recursive call.

}%
\Apply%

}
\def\breakApply#1\Apply{\fi}%
\def\twice#1{#1#1}

\begin{document}
\apply\twice a{bc}d\endApply

\end{document}

12.5 Tail Recursion
�is section studies tail recursion and demonstrates how it may be imple-
mented using low-level TEX delimited commands. By carefully studying
this section the interested reader should fully appreciate TEX and LATEX
programming in the large. �e evaluation of the program which is de-
picted in Figure 12.1, demonstrates TEX expansion in its full glory. �e
program is based on [Fine, 1992]. �ere is one new ingredient in the
example, which is related to decision making. For the purpose of this ex-
ample, the construct \ifx〈A〉〈B〉〈statement〉\fi results in 〈statement〉
if the tokens 〈A〉 and 〈B〉 are equal. �e key to understanding the ex-
ample is observing that (1) \breakApply is applied only once inside
\Apply, (2) that it is only applied when the token \endapply has been
detected, and (3) that \breakApply gobbles the tokens which are follow-
ing \breakApply in the substitution text of \Apply. �e rest all boils
down to tail recursion. It is le� to the reader to determine the resulting
output.

Chapter 13
User-de�ned Styles and Classes

13.1 User-de�ned Style Files

13.2 User-de�ned Class Files

221

222 Chapter 13

Part VI

Miscellany

223

Chapter 14
Beamer Presentations

This chapter is an introduction to the beamer class, which is widely
used for presenting computer presentations. Some people call such pre-
sentations powerpoint presentations. �e class is seamlessly integrated
with the tikz package, and lets you present incremental presentations,
which are presentations which incrementally add material — text and
graphics — to a page of the presentation.

�e purpose of this chapter is not to explain all the possibilities of
the beamer class but to explain just enough for what is needed for one
or two presentations. �e interested reader is referred to the excellent
documentation [Tantau, Wright and Miletić, 2010] for further informa-
tion.

�e remainder of this chapter is as follows. In Section 14.1 we shall
study �ames, which correspond to one or several incremental slides
on the screen. Section 14.2 explains the concept of modal presenta-
tions, which let you generate one or several versions of your presentation.
For example, an in-class presentation and a set of lecture notes. �is
is continued by Section 14.3, which studies incremental presentations.
Section 14.4 shows how to add some visual “alert” e�ects. �is may
be useful to highlight certain parts of the presentation. �is chapter
concludes with Section 14.5, which spends a few words on how you may
personalise your presentations by adding a dash of style.

14.1 Frames
�is section explains the frame environment, which is to a computer
presentation what a page is to an article, a report, or a book. However,
a frame may also be decorated with a frame title and a frame subtitle.
�roughout this section we shall not worry about the overall look and
feel of the presentation.

\begin{frame}[options] 〈frame material〉 \end{frame}
�is is a simpli�ed presentation of the frame environment (Section 14.2
provides a more complete description). When the output document is
a computer presentation the 〈frame material〉 is turned into one or
several slides in the output. Otherwise, it may result in one or several
lines of text in the text of your output document.

225

226 Chapter 14

Creating a titlepage with the
beamer class. �e outline of
the output slide is drawn for
clarity. �e little pictures in
the lower right corner of the
output are for navigation pur-
poses.

Figure 14.1 \documentclass{beamer}

\title{A Titlepage Example}
\author{M.R.C. van Dongen}
\date{December 27, 2010}

\begin{document}
\begin{frame}[fragile]

\maketitle
\end{frame}
\end{document}

A Titlepage Example

M.R.C. van Dongen

December 27, 2010

If the option ‘fragile’ is included in 〈options〉, then 〈frame mate-
rial〉 may contain any LATEX material. Including the option fragile
is by far the easier: just use it. Omitting the option may result in er-
rors. Tantau, Wright and Miletić [2010, Chapter 8] provides further
information about the fragile option.

�e following is important: the \begin{frame} and \end{frame}
commands should be on a line of their own and there should be no
spaces before the \begin and \end.

\frametitle{〈frame title〉}
�is de�nes a frame title, which is usually typeset at the top of the result-
ing slides of a computer presentation. �e frame title is only included
if the output document is text-based. However, as we shall see in Sec-
tion 14.2 it is possible to turn the frame title o� for such documents.
Turning the frame title o� is also possible by rede�ning the \frametitle
command.

\framesubtitle{〈frame subtitle〉}
�is de�nes a subtitle for the frame. �e subtitle is usually typeset below
the frame title.

Figure 14.1 provides the �rst beamer example. As you may see from
the example, it looks like a regular LATEX document with a \title, \au-
thor, and \maketitle command. However, since beamer is a document
class, its name is included in the \documentclass argument. �e com-
mand \maketitle is put in a frame

Figure 14.2 demonstrates a simple beamer frame. �e frame has a
frame title and subtitle and its body consists of an itemised list.

�e beamer class is nice when it works but it may lead to some un-
expected complications. For example, de�ning an environment like the
following may not work.
\newenvironment{myframe}[0]

{\begin{frame}[fragile]}
{\end{frame}}

Don’t Try this at Home

Explaining why this environment doesn’t work is beyond the scope
of this chapter. As a general rule, automating beamer commands may

Beamer Presentations 227

Creating frame titles. �e
outline of the output slide is
drawn for clarity.

Figure 14.2 \begin{frame}[fragile]
\frametitle{A Slide}
\framesubtitle{An Example}

\begin{itemize}
\item Hello world.
\item Bonjour monde.
\end{itemize}

\end{frame}

A Slide
An Example

I Hello world.

I Bonjour monde.

not always work: don’t try it unless you have time. �e manual [Tantau,
Wright and Miletić, 2010] is the ultimate source of information for what
is and isn’t possible.

14.2 Modal Presentations
�is section shows how to exploits beamer’s modes, which let you gen-
erate several kinds of output documents from the same source. Here
di�erent output documents are not only allowed to have a di�erent style
of presentation but also di�erent content. �e following are beamer’s
basic modes.

beamer �is is the default mode, which is what “beamer” is in. It corre-
sponds to a computer presentation with one or several slides per
frame.

second �is mode is for outputting material to a second output screen.

handout �is mode is for handouts. If a frame in the input is typeset in
this mode, then it results in one output slide. �is is di�erent from
the default mode, where one input frame may result in several
output slides.

trans �is mode is for creating transparancies. Having such an option
almost seems like an anachronism. However, having a presen-
tation in the form of transparancies may be useful as a backup
resource, e.g., when presenting away from home.

article �is mode is for typesetting text using a di�erent existing LATEX
class. For example, this book was typeset using LATEX’s book class
in beamer’s article mode. Doing this requires a slightly di�erent
approach. �is time, you use the \documentclass to load the
di�erent class and use the \usepackage command to import the
beamerarticle package. Figure 14.3 demonstrates how to do this.
In this example, all frame titles and frame subtitles are turned o�.

�e beamer class is always in one of these �ve modes. By providing the
mode as an optional argument to the class you determine the mode. If

228 Chapter 14

Using the beamerarticle
package.

Figure 14.3 \documentclass{book}
\usepackage{beamerarticle}
\makeatletter
\def\frametitle{%

\@ifnextchar<%
{\@frametitle@lt}%
{\@frametitle@lt<>}%

}
\def\@frametitle@lt<#1>#2{}
\makeatother

Using modes. �e outline of
the slide is drawn for clarity.

Figure 14.4 \documentclass[handout]
{beamer}

\begin{document}
\begin{frame}

<handout|beamer>
{fragile}

Beamer or handout mode.
\end{frame}
\begin{frame}

<beamer>
{fragile}

Beamer mode.
\end{frame}
\end{document}

Handout or beamer mode.

you omit the mode then beamer will be in, well, beamer mode.
In addition, beamer has the following auxiliary modes:

all �is is for all modes.

presentation �is mode is for all “presentation” modes, so all modes
except for article.

Having de�ned beamer’s modes, it’s time to revisit to its frame envi-
ronment.

\begin{frame}<〈overlay specification〉>[〈options〉] 〈frame material〉 \end{frame}
Here ‘<〈overlay specification〉>’ works like an optional argument.

Modes in 〈overlay specification〉determine whether the frame should
be typeset. For example, if 〈overlay specification〉 is equal to ‘article’
and beamer is in ‘beamer’ mode then the frame is not typeset. You may
combine modes using ‘|’ as a separator: ‘beamer|handout’.

Figure 14.4 demonstrates the basic mode mechanism. �ere are
two frames. �e �rst frame is typeset in handout or beamer mode. �e
second frame is only typeset in beamer mode. �e beamer class is started
in handout mode. �is explains why only the �rst frame is typeset.

Beamer Presentations 229

Other beamer commands and environment may also accept overlay
speci�cations. Having to specify the same overlay speci�cation is tedious
and prone to errors. �e following commands help avoiding redundant
overlay speci�cations.

\mode<〈mode specification〉>{〈text〉}
�is results in inserting 〈text〉 if beamer’s mode corresponds to 〈mode
specification〉. Note that this only works if the �rst non-space charac-
ter following the ‘>’ is an opening brace.

\mode<〈mode specification〉>
�is �lters subsequent text which does not correspond to 〈mode spec-
ification〉. Note that this only works if the �rst non-space character
following the ‘>’ is not a brace.

\mode*
If beamer is in presentation mode, then this command causes beamer
to ignore text outside frames. If beamer is in article mode, then this
command has no e�ect.

14.3 Incremental Presentations
Incremental presentations incrementally unveil parts of the content of
a frame environment. Typically, this is done by displaying the next
item in an itemised list. �e beamer class also provides annotations
which let you present material on the nth output slide which is generated
from a given frame. �e following are some of the relevant commands.
More information may be found in [Tantau, Wright and Miletić, 2010,
Chapter 9].

\pause
�is inserts a pause stop at the corresponding position. �e net e�ect of
it is that this increases the number of output slides which are generated
from the current frame. �e pause stop separates the slides before and
a�er the position of the \pause command.

\pause[〈number〉]
�is command unveils the text following the \pause command from

Slide 〈number〉 and onwards.
Figure 14.5 provides an example of the \pause command. �e frame

in the input results in three slides in the output. �e �rst slide contains
the �rst item of the itemised list. �e second slide contains the �rst,
the second, and the third item. �e last slide contains all items of the
itemised list. It is assumed that beamer is in beamer mode.

�e beamer class rede�nes the standard \item command. �is ver-
sion of the command results in displaying the corresponding item on the
slides corresponding to an overlay speci�cation, which de�nes the slides
on which the item is displayed.

\item<〈overlay specification〉>
�e corresponding item is typeset on the slides corresponding to 〈overlay
specification〉. On the remaining slides, the item is typeset in invisible
ink. Possible 〈overlay specification〉s are as follows:

230 Chapter 14

Using the \pause command.
�e frame environment re-
sults in three output slides,
the second of which is show
to the right. �e outline of
the slide is drawn for clarity.

Figure 14.5
\begin{frame}[fragile]
\begin{itemize}
\item First. \pause
\item Second.
\item Third. \pause
\item Last.
\end{itemize}

I First.

I Second.

I Third.

Using overlay speci�cations.
�e frame environment re-
sults in three output slides,
the second of which is show
to the right. �e outline of
the slide is drawn for clarity.

Figure 14.6
\begin{frame}[fragile]
\begin{itemize}
\item<1-2> First.
\item<3,4> Second.
\item<2> Third.
\item Last.
\end{itemize}

◮ First.

◮ Third.

◮ Last.

〈number〉 �is corresponds to Slide 〈number〉.

〈number〉- �is corresponds to Slide 〈number〉 and further.

-〈number〉 �is corresponds to Slides 1–〈number〉.

〈number〉1-〈number〉2 �is corresponds to Slides 〈number〉1–〈number〉2.

〈overlay specification〉1,〈overlay specification〉2 �is combines
〈overlay specification〉1 and 〈overlay specification〉2.

Other commands may also accept overlay speci�cations. �e reader is
referred to the class documentation [Tantau, Wright and Miletić, 2010]
for further information.

Intermezzo. �e beamer class de�nes many more commands which may be
useful when creating incremental presentations. Incremental presentations
may look slick, but creating them takes precious time. Peyton Jones, Huges
and Launchberry [1993] argue that some of your audience may not even like
incremental presentations which unveil an itemised list one item at a time.
It is the content of the presentation which determines the quality — not
the visual e�ects. If you’re a student then it is not likely that you will have
to give many presentations in your life as a student. �erefore, you should
consider doing yourself and your audience a favour: minimise the visual
e�ects and spend the time you save on the content of the presentation.

�e tikzpackage and the beamer class are seamlessly integrated. �is
means you can also create incremental presentations with tikz pictures.
Such presentations may be highly e�ective. However, creating them may
take a lot of time ….

Beamer Presentations 231

Adding visual alerts. �e
frame to the le� results in
four slides. �e output of the
third slide is depicted to the
right. �e outline of the slide
is drawn for clarity.

Figure 14.7
\begin{frame}[fragile]
\begin{itemize}
\item<alert@2> First.
\item<alert@3> Second.
\item<alert@4> Third.
\end{itemize}
\end{frame}

◮ First.

◮ Second.

◮ Third.

14.4 Visual Alerts
A visual alert in a presentation uses colour to emphasise text. Using
visual alerts is useful if you want to emphasise di�erent parts of a frame
at di�erent times. It is especially useful if you’re discussing items in a list
and if you want to indicate which item is currently being discussed. �e
following are some related commands.

\alert<〈overlay specification〉>{〈text〉}
�is emphasises 〈text〉 on the slides corresponding to 〈overlay speci-
fication〉. Omitting 〈overlay specification〉 results in highlighting
〈text〉 on all slides.

\item<alert@〈overlay specification〉>
�is emphasises the corresponding item in a list on the slides corre-

sponding to 〈overlay specification〉.
\item<〈overlay specification〉1|alert@〈overlay specification〉2>

�is results in displaying the item on the slides corresponding to 〈overlay
speci�cation 〉1 and emphasising the item on the slides corresponding
to 〈overlay speci�cation 〉2.

Figure 14.7 presents an example which uses visual alerts to highlight
the di�erent items in an itemised list.

14.5 Adding Some Style
�e presentation to beamer has been quite minimal. �e main reason
for this is that learning to use the class takes time. For students — the
main target audience — it is better if they stick to simple presentations
and spend their time on the content of their presentation.

Having made these observations, it is good to note that some presen-
tations bene�t from some additional decoration. For example, a menu
listing the sections in the presentation may help the audience recognise
the structure of the presentation.

A beamer theme determines a certain aspect of the visual presentation.
Currently, there are �ve beamer themes: presentation, colour, font, inner,
and outer. �e presentation themes are the easier ones to use because they
de�ne everything in the presentation. New beamer users are better o�
starting with a presentation theme because then they don’t have worry
about the presentation style. Most presentation themes are actually

232 Chapter 14

Using a beamer theme. �e
LATEX input is a template
which is used to demonstrate
the e�ect of the di�erent
beamer themes in the remain-
der of this section. �e out-
puts are obtained by substitut-
ing the name of the themes for
〈theme〉 in the input.

Figure 14.8 \documentclass{beamer}
\usetheme[〈options〉]{〈theme〉}

\title{Prime Number Presentation}
\institute{University of Alexandria}
\author{Euclid}

\begin{document}
\begin{frame}[fragile]
\maketitle
\end{frame}

\section{Main Result}

\begin{frame}[fragile]
\frametitle{There is No Largest Prime Number}
\framesubtitle{The Proof Uses \emph{Reductio ad Absurdum}}
\begin{theorem}
\begin{enumerate}
\item<alert@2> Suppose p were the largest prime number.
\item<alert@2> Let Π be

the product of the first p primes.
\item<alert@4> Then $\Pi + 1$ is not

divisible by any prime.
\item<alert@5> Therefore, $\Pi + 1$ is also a prime.

\qedhere
\end{enumerate}
\end{theorem}
\end{frame}

\section{Conclusion}

\begin{frame}[fragile]
The end.
\end{frame}
\end{document}

quite good. Seasoned beamer users may want to spend some time on
�ne-tuning their own style.

�e remainder of this section presents four presentation themes
which seem nice for a �rst presentation with only a few slides. More
information about themes may be found in the documentation [Tantau,
Wright and Miletić, 2010].

Figure 14.8 demonstrates the input which was used to demonstrate
the di�erent themes. �e input is inspired by the beamer documentation.
�e resulting outputs are listed in Figures 14.9–14.12. For each theme,

Beamer Presentations 233

the �gure contains the ��h slide, i.e., the fourth slide of the second
frame.

Sample output of beamer’s de-
fault theme. �e outline of
the slide is drawn for clarity.

Figure 14.9
There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Theorem

1. Suppose p were the largest prime number.

2. Let Π be the product of the first p primes.

3. Then Π+ 1 is not divisible by any prime.

4. Therefore, Π+ 1 is also a prime. �

Sample output of beamer’s
Boadilla theme. �e option
secheader was passed as an
option to the \usetheme com-
mand. �e outline of the slide
is drawn for clarity.

Figure 14.10 Main Result

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Theorem
1 Suppose p were the largest prime number.

2 Let Π be the product of the first p primes.

3 Then Π+ 1 is not divisible by any prime.

4 Therefore, Π+ 1 is also a prime. �

Euclid (University of Alexandria) Prime Number Presentation December 28, 2010 2 / 2

Figure 14.9 depicts the sample output of beamer’s default theme.
�is theme is very sober and implements visual alerts by typesetting text
in red, which is the default for visual alerts.

234 Chapter 14

�e Boadilla theme, which is depicted in Figure 14.10, is a bit more
lively. Using this theme also adds some information about the “author”
at the bottom of each slide. Passing the option secheader also lists the
current section and subsection at the bottom of the slides.

Sample output of beamer’s An-
tibes theme. �e outline of
the slide is drawn for clarity.

Figure 14.11 Prime Number Presentation

Main Result

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Theorem

1 Suppose p were the largest prime number.

2 Let Π be the product of the first p primes.

3 Then Π+ 1 is not divisible by any prime.

4 Therefore, Π+ 1 is also a prime. �

Sample output of beamer’s
Goettingen theme. �e out-
line of the slide is drawn for
clarity.

Figure 14.12
Prime Number
Presentation

Euclid

Main Result

Conclusion

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Theorem

1. Suppose p were the largest prime number.

2. Let Π be the product of the first p primes.

3. Then Π+ 1 is not divisible by any prime.

4. Therefore, Π+ 1 is also a prime. �

Sample output of the Antibes theme is depicted in Figure 14.11. On
top of the information which is provided by Boadilla, this theme also

Beamer Presentations 235

provides a tree-line navigation menu at the top. �is kind of informa-
tion may be useful for the audience because it helps them recognise the
presentation stucture and helps them determine where you “are” in the
presentation.

�e �nal theme is Goettingen. It is depicted in Figure 14.12. �is
theme is for long presentations and comes equipped with a sidebar con-
taining a table of contents. �is theme accepts the following options.

hideallsubsections �is removes subsection information from the
sidebar.

hideothersubsections With this option only the subsections of the
current section are shown in the sidebar.

left �is puts the sidebar to the le�. �is is the default behaviour.

right �is puts the sidebar on the right.

width=〈dimension〉 �is sets the width of the sidebar. Providing a
width of zero hides the sidebar.

236 Chapter 14

Chapter 15
Installing LATEX and Friends

This chapterdescribes how to install a widely available LATEX distri-
bution called TEX Live, how to con�gure TEX Live, how to install LATEX
class and style �les, and how to install and use new fonts. �e remainder
of this chapter is as follows. Section 15.1 explains how to install the
TEX Live distribution. �is is followed by Section 15.2, which explains
how to con�gure the TEX Live distribution. Section 15.3 explains how
to install new classes and packages (style �les). Section 15.4 explains how
to install LATEX fonts — this is not an easy task. Section 15.5 describes
the easier task of installing Unix .otf and .ttf fonts. In Section 15.6 it
is shown how these Unix fonts can be used directly in LATEX using the
fontspec package. Section 15.7 concludes this chapter by providing
some clues on how to intall TEX Live with a package manager such as
apt-get.

15.1 Installing TEX Live
One of the easier LATEX distribution to install is TEX Live. TEX Live may
be downloaded from the CTAN! (CTAN!) from ftp.heanet.ie/pub/
CTAN/tex/systems/texlive/Images/.

�e TEX Live distribution comes as an .iso image. Installing it is
child’s play (throughout it is assumed you have root access).

�e following demonstrates how to install the distribution. In the
example, it is assumed that you’ve downloaded the .iso image and that
it is called texlive.iso. If you create a Compact Disk (cd) with the
image then you can run the command ./install-tl.sh from the cd’s
root directory. However, there is no need to create a cd: you can directly
mount the .iso image. �e following show how this is done.

We start by creating a directory /mnt/texlive and by mounting the
.iso image using mount and the loop option.
mkdir /mnt/texlive
mount -t iso9660 -o loop texlive.iso /mnt/texlive

Unix Session

�e image being mounted, we continue by going to the mounted
directory and by running the install program, which is called install-
tl.sh:

237

ftp.heanet.ie/pub/CTAN/tex/systems/texlive/Images/
ftp.heanet.ie/pub/CTAN/tex/systems/texlive/Images/

238 Chapter 15

cd /mnt/texlive
./install-tl.sh

Unix Session

�e install program is interactive and is pretty intuitive. Once you’ve
selected your con�guration setting — the default setting should do — you
select Option I in the main menu and the installation begins. A�er the
installation you unmount and remove the directory /mnt/texlive. �e
following shows how to do this.
cd /
umount /mnt/texlive
rmdir /mnt/texlive

Unix Session

15.2 Con�guring TEX Live
Having installed the TEX Live source �les we’re almost done with our in-
stallation. All that remains is related to con�guration. �is section gives
some minimal clues on how to con�gure LATEX and friends. �roughout
LATEX is used as a shorthand for LATEX and friends. In the following,
Section 15.2.1 explains how to con�gure the Unix search path and Sec-
tion 15.2.2 explains how to con�gure the LATEX search path.

15.2.1 Adjusting the PATH
First we adjust the PATH environment variable, which is needed by Unix
to locate your executables. We con�gure the PATH variable by adding
the path name of the directory containing the LATEX executables. �e
following example shows how to do this. In the example, it is assumed
that the directory containing the executables is /usr/local/texlive
/2007/bin/i386-linux.

˜> PATH=/usr/local/texlive/2007/bin/i386-linux:${PATH}
˜> export PATH

Unix Session

�e best thing is putting these commands in your .login �le.

15.2.2 Con�guring TEXINPUTS

�e �nal task of our con�guration chores is setting up the LATEX envi-
ronment variable TEXINPUTS, which is used to specify the search path for
input �les. �is variable de�nes a sequence of paths which are searched
by LATEX when it is looking for input �les.

As with the PATH environment variable, the paths are separated with
colon (:) characters. When looking for an input �le called file, the
paths in ${TEXINPUTS} are searched from le� to right. If one of them,
path say, contains file, and if path is the �rst such path, then LATEX
will assume that path is the directory from which it should load file.
Otherwise LATEX will try and locate file in its default directories. �is
mechanism allows you to help LATEX locate �les which are located in
non-standard locations and override the default locations. It is especially

Installing LATEX and Friends 239

useful for setting up a local directory with user-speci�c class and style
�les.

�e TEXINPUTS mechanism is more �exible than the PATH mech-
anism. By adding a double forward slash (//) to the end of a path,
LATEX will search the path recursively. �e following is a typical con-
�guration, which tells LATEX to �rst search the current directory, next
recursively search the directory ${HOME}/LaTeX/styles, and �nally re-
cursively search the directory ${HOME}/LaTeX/mpost.
˜> export LaTeX=${HOME}/LaTeX
˜> export TEXINPUTS=.:${LaTeX}/styles//:${LaTeX}/mpost//:

Unix Session

15.3 Installing Classes and Packages
�is section explains how to install user-speci�c class and package (style)
�les which are not part of the standard distribution. �e mechanism for
installing these �les as it is presented here allows the users to use their
own versions of class and style �les (as opposed to other versions which
are installed in the main installation).

To install user-speci�c class and style �les, it is strongly recommended
this be done in a special-purpose directory which is owned by the user.
�e sole purpose of the directory should be to store class and package
�les and other input �les which are used frequently as input for other
source �les. By properly con�guring the TEXINPUTS variable — this is
explained in Section 15.2.2 — the user can force LATEX to �rst recur-
sively search the special-purpose directory for their own input �les. �is
e�ectively allows them to install and use more recent (or older) versions
of class and style �les as well as install their own user-speci�c �les in a
location where LATEX will �nd them.

Let’s assume we want to install a new style or class �le. To install the
�le we do the following.

Download �les Download the �les. If needed uncompress them. It is
good practice to put the �les in a separate directory in your special-
purpose directory. �is makes it easy to locate the package-related
�les and uninstall them.

Extract �les Run LATEX on the .ins �le.

Create documentation Run LATEX on the .dtx �le. You may have to do
this more than once to get cross-references right. Likewise, you
may have to create index �les if .idx �les are created as a result of
the compilation process. Section 1.8.4 describes how to do this.

Update package database Run the texhash program. �is adds the
location of the �les to the package database, which allows LATEX
to �nd your �les on subsequent runs.

240 Chapter 15

15.4 Installing LATEX Fonts

�is section brie�y explains how to install new fonts. To Do.

15.5 Installing Unix Fonts
If you haven’t done it before then installing fonts the LATEX way may a
lot of work. However, with the arrival of the beautiful fontspec package
you can now directly use any Unix .ttf or .otf font.1 �is reduces the
task of using non-standard fonts to the installation of Unix fonts. In
the following we shall install fonts globally. To do this you need root
permission.

To explain the mechanism, we shall study how to install the In-
consolata monospaced font. You may download the font from http:
//www.levien.com/type/myfonts/inconsolata.html.

• To keep the management of your fonts under control, it is rec-
ommended that you put your .otf and .ttf �les in a special
directory for each speci�c font. In the following it is assumed all
such directories are located in ${HOME}/.fonts.

• Since we decided to have a special directory for each font, our next
step is to create a directory called Inconsolata in the directory
${HOME}/.fonts.

• We continue by downloading the �le Inconsolata.otf and save
it in the new directory.

• Now that we’ve saved the font, we have to make sure we can use it.
To do this we have to build the font information cache �les. Build-
ing these �les may be done with the fc-cache program. Our deci-
sion to install all our fonts in the directory called ${HOME}/.fonts
makes the installation very easy and easy to automate. In the fol-
lowing example, we run fc-cache recursively on our directory
${HOME}/.fonts and make it (really) force the installation. As
may be noticed from the example, the program is run in the user’s
home directory.
˜> su
Password:
fc-cache -fvr ./fonts

Unix Session

15.6 Using the fontspec Package
�e fontspec package provides an easy mechanism for con�guring fonts.
It signi�cantly reduces the task of installing fonts. �e fontspec pack-
age allows users of either xetex or luatex to load OpenType fonts in a
LATEX document. �e package more than likely comes with your LATEX
distribution but can also be downloaded from ctan.

1Some of the features of the fontspec package are described in Section 15.6.

http://www.levien.com/type/myfonts/inconsolata.html
http://www.levien.com/type/myfonts/inconsolata.html

Installing LATEX and Friends 241

Using the fontspec package.
Figure 15.1 \usepackage{fontspec}

% Without the following, things may not work the LaTeX way
\defaultfontfeatures{Mapping=tex-text}

\setsansfont[Ligatures=Rare,Numbers={SlashedZero}]{Arial}
\setromanfont[Ligatures=Rare,Numbers={OldStyle}]{Garamond}
\setmonofont{Inconsolata}

It is impossible to explain the functionality of the fontspec package
in full detail. Figure 15.1 provides a minimal example which shows how
the commands \setsansfont, \setromanfont, and \setmonofont may
be used to use other non-standard fonts. As is suggested by the names,
the commands are for de�ning the default sans serif font, the default
roman (serif) font, and the default mono-space font. It is also possible
to use fontspec in combination with locally installed fonts. �e reader
is referred to the comprehensive fontspec documentation [Robertson,
2008] for further information about the beautiful package.

15.7 Package Managers
With the advance of package managers, such as apt-get (Debian, Ubuntu,
…) installing LATEX and friends has become much easier. However, a
possible disadvantage is that it may not always be possible to get the
most recent version of TEX Live.

Installing TEX Live with apt-get requires the following two com-
mands and the typing of the root password:
˜> sudo apt-get update
[sudo] password for user:
˜> sudo apt-get install texlive

Unix Session

A full version of TEX Live may be installed as follows:
˜> sudo apt-get install texlive-full Unix Session

An additional advantage of installing LATEX with a package manger
such as apt-get is that there is no need to adjust the PATH environment
variable. If you don’t require any user-speci�c options, then con�guring
the environment variable TEXINPUTS may not be necessary either.

242 Chapter 15

Chapter 16
Resources

This chapter provides some pointers to useful resources. Most of
them are available online.

16.1 Books about TEX and LATEX
�e following are great books about TEX and LATEX. Many of them are
freely available.

• [Knuth, 1990]: �e original reference to TEX. �e source code is
freely available.

• [Lamport, 1994]: From the creator of LATEX.
• [Abrahams, Hargreaves and Berry, 2003]: Good book about TEX.

Freely available.
• [Eijkhout, 2007]: Good book about TEX. Freely available.
• [Goossens, Mittelbach and Samarin, 1994]: LATEX book.
• [Goossens, Rahtz and Mittelbach, 1997]: Graphics and LATEX.
• [Goossens, Rahtz and Mittelbach, 1999]: Creating navigable

documents with TEX and LATEX.

16.2 Bibliography Resources
Detailed information about managing your bibliography with LATEX
is [Fenn, 2006]. More information may be found at http://en.wikipedia.
org/wiki/BibTeX.

16.3 Articles by the LATEX3 Team
Articles by the LATEX3 Team. All are available online.

• [�e LATEX3 Project, 2001b]: LATEX User guide.
• [�e LATEX3 Project, 2001c]: Explains how to to create LATEX

class and style �les. A seemingly very related etoolbox package.
• [�e LATEX3 Project, 2001a]: Explains the LATEX Font Selection

Mechanism.
• [�e LATEX3 Project, 2001]: Explains how to con�gure LATEX.
• [Braams et al., 2001]: Describes the LATEX 2ε sources.

243

http://en.wikipedia.org/wiki/BibTeX
http://en.wikipedia.org/wiki/BibTeX

244 Chapter 16

16.4 LATEX Articles, Course Notes and Tutorials
LATEX and TEX articles, course notes, and tutorials: All are available
online.

• [Oetiker et al., 2007]: Most-cited LATEX tutorial.
• [Voß, 2009]: Comprehensive and interesting presentation of com-

mands and environments in math mode (including AMS-LATEX-
provided symbols).

• [Eijkhout, 2004]: Course about the computer science behind
LATEX.

• [Krishnan, 2003]: A very comprehensive LATEX tutorial.
• [Heck, 2005a]: Hands-on LATEX tutorial.
• [Reckdahl, 2006]: Explains how to include imported graphics in

LATEX and pdfLATEX.
• [Pakin, 2005]: A list of symbols and how to produce them with

LATEX.
• [Pakin, 2006]: A Frequently Asked Questions (faq). Click on

the sensitive areas and you’ll be shown how to produce it.
• [Maltby, 1992]: A TEX tutorial.

16.5 METAPOST Articles and Tutorials
�e following are some interesting METAPOST tutorials. All are avail-
able online.

• [Hagen, 2002]: METAPOST tutorial in the form of small exam-
ples.

• [Making MetaPost Outlines]: Describes how to turn LATEX into
METAPOST graphics.

• [Hurlin, 2007]: Practical introduction to METAPOST.
• [Heck, 2005b]: Hands-on introduction to METAPOST.

16.6 On-line Resources
• Comprehensive TEX Archive Network (CTAN):

– Home: http://www.ctan.org.
– Search: http://www.ucc.ie/cgi-bin/ctan.

• TEX Users Group (tug):
– Home: http://www.tug.org/.
– Resources: http://www.tug.org/interest.html.

• UK TEX FAQ: http://www.tex.ac.uk/cgi-bin/texfaq2html.
• �e American Mathematical Society’s TEX Pages: http://www.

ams.org/tex/.
• Pages related to the tikz package:

– Sourceforge page for the tikzpackage: http://sourceforge.
net/projects/pgf/.

http://www.ctan.org
http://www.ucc.ie/cgi-bin/ctan
http://www.tug.org/
http://www.tug.org/interest.html
http://www.tex.ac.uk/cgi-bin/texfaq2html
http://www.ams.org/tex/
http://www.ams.org/tex/
http://sourceforge.net/projects/pgf/
http://sourceforge.net/projects/pgf/

Resources 245

– Fauskes.net impressive list of examples: http://www.texample.
net/tikz/examples/.

– Alain Matthes’ beautiful tkz-berge package for drawing
graphs: http://www.altermundus.fr/pages/download.html.

• Donald Knuth’s homepage (creator of TEX): http://www-cs-faculty.
stanford.edu/~knuth/.

• John Hobby’s METAPOST Pages: http://cm.bell-labs.com/
who/hobby/MetaPost.html.

• �e LATEX Project: http://www.latex-project.org/.
• PdfTEX support: http://www.tug.org/applications/pdftex/.
• Generating PDF with animations and LATEX: http://darkwing.

uoregon.edu/~noeckel/PDFmovie.html.
• A list of METAPOST links may be found at http://csweb.ucc.

ie/~dongen/mpost/links.html.
• �e ghostview resource page: http://pages.cs.wisc.edu/~ghost/

gv/index.htm.
• �e gsview page: http://pages.cs.wisc.edu/~ghost/gsview/.
• �e AucTEX pages. AucTEX is a LATEX editing environment, which

includes real-time viewing of the �nal output in a separate window.
�e package may be downloaded from http://www.gnu.org/
software/auctex/.

• �e TEXnicCenter pages. TEXnicCenter is an integrated LATEX de-
velopment environment (IDE). �e package may be downloaded
from http://www.texniccenter.org/.

16.7 YouTube Resources
�e following are some YouTube resources.

• Using LATEX with MikTex:

– http://sites.google.com/site/wdoerner/latex;
– http://www.youtube.com/watch?v=mVq16Tl_W20&feature=

related.

• Using LATEX with Lyx: Parts 1–5:

– http://www.youtube.com/watch?v=m4cEAVmLegg&feature=
related;

– http://www.youtube.com/watch?v=Wq9ti7GGHrs&feature=
related;

– http://www.youtube.com/watch?v=O5okEyYQ-Og&feature=
related;

– http://www.youtube.com/watch?v=sJpfyydhAzo&feature=
related;

– http://www.youtube.com/watch?v=wyV_cjV-c1I&feature=
related.

• MikTex and Texniccenter installation:

http://www.texample.net/tikz/examples/
http://www.texample.net/tikz/examples/
http://www.altermundus.fr/pages/download.html
http://www-cs-faculty.stanford.edu/~knuth/
http://www-cs-faculty.stanford.edu/~knuth/
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.latex-project.org/
http://www.tug.org/applications/pdftex/
http://darkwing.uoregon.edu/~noeckel/PDFmovie.html
http://darkwing.uoregon.edu/~noeckel/PDFmovie.html
http://csweb.ucc.ie/~dongen/mpost/links.html
http://csweb.ucc.ie/~dongen/mpost/links.html
http://pages.cs.wisc.edu/~ghost/gv/index.htm
http://pages.cs.wisc.edu/~ghost/gv/index.htm
http://pages.cs.wisc.edu/~ghost/gsview/
http://www.gnu.org/software/auctex/
http://www.gnu.org/software/auctex/
http://www.texniccenter.org/
http://sites.google.com/site/wdoerner/latex
http://www.youtube.com/watch?v=mVq16Tl_W20&feature=related
http://www.youtube.com/watch?v=mVq16Tl_W20&feature=related
http://www.youtube.com/watch?v=m4cEAVmLegg&feature=related
http://www.youtube.com/watch?v=m4cEAVmLegg&feature=related
http://www.youtube.com/watch?v=Wq9ti7GGHrs&feature=related
http://www.youtube.com/watch?v=Wq9ti7GGHrs&feature=related
http://www.youtube.com/watch?v=O5okEyYQ-Og&feature=related
http://www.youtube.com/watch?v=O5okEyYQ-Og&feature=related
http://www.youtube.com/watch?v=sJpfyydhAzo&feature=related
http://www.youtube.com/watch?v=sJpfyydhAzo&feature=related
http://www.youtube.com/watch?v=wyV_cjV-c1I&feature=related
http://www.youtube.com/watch?v=wyV_cjV-c1I&feature=related

246 Chapter 16

– http://www.youtube.com/watch?v=NeNOj_Ulys8&feature=
related.

16.8 English
• [�omson and Martinet, 1986a]: A brilliant English Gramar!

�is book comes with two exercise books [�omson and Martinet,
1986b; �omson and Martinet, 1986c].

• [Allan, 2001]: Great punctuation reference guide with informa-
tion about need for, origin of, and how to use punctuation.

• [Trask, 1997]: Punctuation reference guide.
• On-line Oxford English Dictionary: http://dictionary.oed.

com/.

http://www.youtube.com/watch?v=NeNOj_Ulys8&feature=related
http://www.youtube.com/watch?v=NeNOj_Ulys8&feature=related
http://dictionary.oed.com/
http://dictionary.oed.com/

Part VII

References and Bibliography

247

Indices

249

250

Index of LATEX and TEX Commands

\’, 42
\(, 218, 219
\), 218, 219
\+, 56, 57
\,, 44, 76, 117, 118, 120, 144–

152, 154–158, 160, 161,
163, 165, 166, 170–174,
219

\-, 56, 57
\., 42
\:, 174
\;, 174, 181, 184
\=, 42, 56, 57
\>, 57
\[, 145, 150–152, 154–158, 160–

162, 165, 166, 170, 171,
173, 219

\#, 40
\$, 40
\%, 40
\&, 40
\ˆ, 42
_ , 40
\\, 47, 51, 56, 118, 120, 144–

149, 151, 157, 185, 186
*, 47
\{ , 40, 151
\} , 40
\˜, 42
\], 145, 150–152, 154–158, 160–

162, 165, 166, 170, 171,
173, 219

\‘, 42

\, 45

\AA, 43
\aa, 43
\abstract, 12
\acute, 164
\addcontentsline, 15
\addlegendentry, 125, 128, 129,

131, 133
\addlinespace, 54
\addplot, 125–135

\addplot+, 132
\address, 34
\addtocounter, 214, 219
\addtolength, 217, 219
\AE, 43
\ae, 43
\aleph, 178
\alert, 231
\Alph, 61, 62
\alph, 61–64
\alpha, 142, 143, 162
\amalg, 175
\AND, 218
\and, 11, 218
\angle, 178
\appendix, 16
\approx, 161, 176
\approxeq, 176
\arabic, 61, 62
\arccos, 158
\arcsin, 158
\arctan, 158
\arg, 158
\arraycolsep, 56
\arrayrulewidth, 56
\arraystretch, 56
\ast, 175
\asymp, 176
\author, 9–11, 226, 232

\b, 42
\backepsilon, 176
\backmatter, 15
\backsim, 176
\backsimeq, 176
\backslash, 39, 40, 154, 178
\bar, 164
\baselinekip, 216
\because, 176
\begin, 10–12, 15, 17, 20, 25,

29, 34, 47–51, 53–55,
57, 60–64, 70–72, 76–
82, 84–93, 95, 98–100,
103, 104, 107–110, 118–

Resources 251

120, 125, 127, 129, 131,
133, 134, 144–149, 151,
157, 159, 160, 162, 163,
165, 170, 172, 181, 183,
184, 187, 196, 197, 200,
203, 206, 214, 215, 218–
220, 225–228, 230–232

\begingroup, 42
\beta, 32, 142, 143, 162
\between, 176
\bfseries, 41, 42, 49, 188
\bibliography, 15, 24, 25, 28,

29
\bibliographystyle, 22, 25, 28
\bibname, 15
\BibTeX, 28
\bigcap, 156
\bigcirc, 175
\bigcup, 156
\bigl, 163
\bigodot, 156
\bigoplus, 156
\bigotimes, 156
\bigr, 163
\bigsqcup, 156
\bigtriangledown, 175
\bigtriangleup, 175
\biguplus, 156
\bigvee, 156
\bigwedge, 156
\binom, 141, 144, 157
\bmod, 159, 181
\boldmc, 120
\boldsymbol, 174
\boolean, 218
\bot, 178
\bottomrule, 53, 54, 118, 120
\bowtie, 176
\Box, 178
\breve, 164
\bullet, 175
\Bumpeq, 176
\bumpeq, 176

\c, 42
\cap, 175

\caption, 69–71, 118, 119, 180,
181, 197

\Case, 183
\cc, 34
\cdot, 171, 175
\cdotp, 170, 171
\cdots, 170, 171
\centering, 72
\cfrac, 154
\chapter, 14–16, 18, 20, 30
\chapter*, 14, 15
\check, 164
\chi, 143
\circ, 175
\circeq, 176
\cite, 3, 22, 23, 25, 27, 28, 40,

45, 155
\Citeauthor, 27
\citeauthor, 27
\citep, 27
\Citet, 27
\citet, 27
\citeyear, 27
\cleardoublepage, 29
\clearpage, 29
\cline, 52, 56
\closing, 34
\clubsuit, 178
\cmidrule, 54
\colon, 166, 170, 171
\colorlet, 84
\commandkey, 211
\cong, 176
\coprod, 156
\cos, 158
\cosh, 158
\cot, 158
\coth, 158
\csc, 158
\csname, 202, 203, 206
\cup, 175
\curlyeqprec, 176
\curlyeqsucc, 176

\d, 42
\dagger, 175
\dashv, 176

252

\date, 10, 11, 226
\ddagger, 175
\ddddot, 164
\dddot, 164
\ddot, 164
\ddots, 170, 171
\DeclareGraphicsExtensions, 73
\DeclareGraphicsRule, 74
\DeclareMathOperator, 140, 159
\DeclareMathOperator*, 159, 160
\DeclareRobustCommand, 198
\def, 201–205, 210, 211, 220
\defaultfontfeatures, 241
\definecolor, 83
\deg, 158
\Delta, 143
\delta, 143
\det, 158
\Diamond, 178
\diamond, 175
\diamondsuit, 178
\digamma, 142, 143
\dim, 158
\displaystyle, 156
\div, 175
\do, 219
\documentclass, 10, 25, 33, 34,

159, 160, 196, 200, 203,
220, 226, 228, 232

\dot, 164
\doteq, 176
\doteqdot, 176
\dotsb, 154, 165, 171
\dotsc, 171
\dotsi, 171
\dotsm, 171
\dotso, 171
\doublerulesep, 56
\Downarrow, 154, 177
\downarrow, 154, 177
\draw, 76–82, 84–89, 91–93, 95,

96, 98–100, 103–110,
112, 134

\edef, 202
\eIf, 183
\ell, 177, 178

\else, 215
\ElseIf, 182
\emph, 46, 47, 232
\emptyset, 178
\encl, 34
\end, 10–12, 15, 17, 20, 25, 29,

34, 47–51, 53–55, 57,
60–64, 70–72, 76–82,
84–91, 93, 95, 98–100,
103, 104, 107–110, 118–
120, 125, 127, 129, 131,
133, 134, 144–149, 151,
157, 162, 163, 165, 170,
172, 181, 183, 184, 187,
196, 197, 200, 203, 206,
214, 215, 218–220, 225–
228, 230–232

\endcsname, 202, 203, 206
\endfirsthead, 119, 120
\endfoot, 119, 120
\endgroup, 42
\endhead, 119, 120
\endlastfoot, 119, 120
\endlatsfoot, 119
\epsilon, 41, 143
\eqcirc, 176
\equal, 218
\equiv, 159, 176
\eta, 143
\eUlseIf, 182
\euro, 54
\exists, 178
\exp, 158
\expandafter, 202, 203
\extracolsep, 55

\fallingdotseq, 176
\fi, 215, 220
\figure, 209
\fill, 55, 82, 83, 90, 91, 104
\filldraw, 83, 90
\flat, 178
\flushbottom, 216
\footnote, 46
\footnotesize, 48
\For, 184, 185
\ForAll, 185

Resources 253

\forall, 178
\ForEach, 185
\foreach, 104, 105, 108
\frac, 107, 153, 154, 156, 158,

160, 161
\framesubtitle, 226, 227, 232
\frametitle, 226, 227, 232
\frenchspacing, 45
\frontmatter, 15
\frown, 176

\Gamma, 143
\gamma, 142, 143, 162
\gcd, 158, 159
\geq, 173, 176, 181
\gg, 176
\graphicspath, 73
\grave, 164

\H, 42
\hat, 163, 164, 176
\hbar, 178
\hbox, 43
\heartsuit, 178
\hline, 52, 53, 56
\hom, 158
\hookleftarrow, 177
\hookrightarrow, 177
\hphantom, 50, 174
\hspace, 55
\Huge, 48
\huge, 48
\hyphenation, 57, 58

\i, 42
\idotsint, 156, 161
\If, 182, 186
\ifnotes, 215
\ifthenelse, 217, 218
\ifx, 220
\iiiint, 156, 161
\iiint, 156, 161
\iint, 156, 161
\Im, 178
\imath, 176, 178
\in, 174, 176
\include, 17, 29, 213
\includegraphcs, 72

\includegraphics, 72–74
\includeonly, 17
\index, 31, 32, 197
\inf, 158
\infty, 147, 155, 156, 178
\input, 17
\institute, 232
\int, 156, 160, 161, 171
\intertext, 149
\iota, 143
\isodd, 218
\isundefined, 218
\item, 59–62, 64, 227, 229–232
\itemindent, 63
\itemsep, 63
\itshape, 49, 188

\j, 42
\jmath, 176, 178
\Join, 176

\kappa, 143
\ker, 158
\kill, 56, 57
\KwData, 182
\KwIn, 181
\KwOut, 181
\KwResult, 182
\KwRet, 182

\L, 43
\l, 43
\label, 17, 18, 20, 70, 118, 144,

145, 147, 167, 204, 205
\labelenumi, 61
\labelenumii, 61
\labelenumiii, 61
\labelenumiiv, 61
\labelitemi, 59, 60
\labelitemii, 60
\labelitemiii, 60
\labelitemiv, 60
\labelsep, 63
\labelwidth, 63
\Lambda, 143
\lambda, 143
\langle, 153, 154, 163
\LARGE, 48

254

\Large, 48
\large, 48
\LaTeX, 10–12, 22, 25, 28, 29,

203
\lceil, 153, 154
\ldotp, 170
\ldots, 153, 170, 171, 173
\left, 149–153, 155, 160–163,

174
\Leftarrow, 177
\leftarrow, 177, 181
\leftharpoondown, 177
\leftharpoonup, 177
\leftmargin, 63, 64
\Leftrightarrow, 177
\leftrightarrow, 177
\leftroot, 162
\legend, 71
\lElse, 183
\lengthtest, 218
\leq, 151–153, 157, 176
\let, 204, 205
\lfloor, 153, 154
\lg, 155, 158
\lhd, 175
\lim, 140, 158
\liminf, 158
\limsup, 158
\lipsum, 194
\listofalgorithms, 180
\listoffigures, 29
\listoflistings, 187
\listoftables, 29
\listparindent, 63
\ll, 176
\ln, 158
\log, 155, 158
\long, 202
\Longleftarrow, 177
\longleftarrow, 177
\Longleftrightarrow, 177
\longleftrightarrow, 177
\longmapsto, 177
\Longrightarrow, 177
\longrightarrow, 177
\lstinputlisting, 186
\lstset, 188

\lVert, 152, 154
\lvert, 152, 154, 162

\mainmatter, 15
\makeatletter, 203–205
\makeatother, 203–205
\makeindex, 31, 197
\MakeRobustCommand, 198
\maketitle, 10–12, 15, 29, 226,

232
\mapsto, 163, 166, 177
\marginpar, 46
\mathbb, 140, 166, 173, 174
\mathbf, 140, 174
\mathcal, 175
\mathfrac, 140
\mathit, 174
\mathop, 160
\mathring, 164
\mathrm, 118, 120, 159–161, 173,

174
\mathsf, 175
\mathtt, 175
\max, 158
\mdseries, 49
\medspace, 174
\metre, 173
\mho, 178
\mid, 174, 176
\midrule, 53, 54, 118, 120
\min, 158
\mod, 159
\mode, 229
\mode*, 229
\models, 176
\MonoIdx, 197
\mp, 175
\mu, 143
\multicolumn, 53, 54, 120
\multimap, 176

\n, 106
\nabla, 178
\natural, 178
\nearrow, 177
\neg, 178
\negmedspace, 174
\negthickspace, 174

Resources 255

\negthinspace, 174
\neq, 176, 181
\newbibliography, 28
\newboolean, 217
\newcommand, 120, 195–197, 200,

206
\newcounter, 63, 64, 213, 214,

219
\newenvironment, 64, 65, 206,

207, 226
\newif, 214, 215
\newkeycommand, 211
\newkeyenvironment, 211
\newlength, 216
\newrefformat, 20
\newtheorem, 140, 168, 169
\newtheoremstyle, 169, 170
\ni, 176
\nocite, 23
\node, 96, 109, 110, 133
\nodepart, 96
\noexpand, 202
\nonumber, 147
\normalfont, 49
\normalsize, 48
\NOT, 218
\not, 218, 219
\notestrue, 215
\notin, 176
\nu, 143
\nwarrow, 177

\O, 43
\o, 43, 143
\odot, 175
\OE, 43
\oe, 43
\oint, 156
\Omega, 143
\omega, 143
\ominus, 175
\opening, 34
\oplus, 175
\OR, 218
\or, 218
\oslash, 175
\Other, 184

\otimes, 175
\overbrace, 163, 164
\overleftarrow, 164
\overleftrightarrow, 164, 177
\overline, 163, 164
\overrightarrow, 164

\p, 106
\pageref, 18
\paragraph, 30
\parallel, 176
\parindent, 216
\parsep, 63
\parskip, 63, 216, 217
\part, 29, 30
\part*, 29
\partial, 161, 178
\partopsep, 63
\path, 77–84, 89–91, 93, 95, 98,

105–107
\pause, 229, 230
\per, 173
\perp, 176
\pgfmathparse, 101
\pgfplotsset, 126
\phantom, 50, 174
\Phi, 143
\phi, 143
\Pi, 143, 232
\pi, 143
\pitchfork, 176
\pm, 175
\pmb, 174
\pmod, 159
\pod, 159
\Pr, 158
\prec, 176
\precapprox, 176
\preccurlyeq, 176
\preceq, 176
\precsim, 176
\prettyref, 20
\prime, 178
\printindex, 31, 197
\prod, 156
\propto, 176
\protect, 70, 198

256

\provideboolean, 217
\ps, 34
\Psi, 143
\psi, 143

\qedhere, 170, 232
\qquad, 47, 48, 145–147, 151,

172–174
\quad, 172, 174

\raggedleft, 51
\raggedright, 51
\rangle, 153, 154, 163
\ratio, 219
\rceil, 153, 154
\Re, 178
\ref, 17–20, 40, 144, 145, 147,

167
\refname, 23
\relay, 205
\renewcommand, 23, 60, 61, 195,

196
\renewenvironment, 207
\Repeat, 185
\rfloor, 153, 154
\rhd, 175
\rho, 143
\right, 149–153, 155, 160–163,

174
\Rightarrow, 177
\rightarrow, 177
\rightharpoondown, 177
\rightharpoonup, 177
\rightleftharpoons, 177
\rightmargin, 63, 64
\risingdotseq, 176
\rmfamily, 49
\Roman, 61, 62
\roman, 61, 62
\rVert, 152, 154
\rvert, 152, 154, 160, 162

\scriptsize, 48
\scshape, 49
\searrow, 177
\sec, 158
\secnumdepth, 30
\second, 173

\section, 10, 12, 14, 16, 30, 204,
205, 215, 232

\section*, 14
\selectlanguage, 58
\setboolean, 217
\setcounter, 30, 213, 214, 219
\setkeys, 73, 210, 211
\setlength, 64, 216, 217, 219
\setminus, 175
\setmonofont, 241
\setromanfont, 241
\setsansfont, 241
\settodepth, 217
\settoheight, 217
\settowidth, 217
\sffamily, 49
\shade, 83
\shadedraw, 83
\sharp, 178
\shortintertext, 149
\shortmid, 176
\shortparallel, 176
\shoveleft, 146
\shoveright, 146
\SI, 173
\Sigma, 143
\sigma, 143
\signature, 34
\sim, 176
\simeq, 176
\sin, 140, 158
\sinh, 158
\sisetup, 173
\slshape, 49
\small, 48
\smallfrown, 176
\smallsmile, 176
\smile, 176
\spadesuit, 178
\spy, 108
\sqcap, 175
\sqcup, 175
\sqrt, 161, 162
\sqsubset, 176
\sqsubseteq, 176
\sqsupset, 176
\sqsupseteq, 176

Resources 257

\squared, 173
\ss, 43
\star, 175
\stepcounter, 213, 214
\subparagraph, 30
\subsection, 30
\subset, 176
\subseteq, 176
\substack, 157
\subsubsection, 30
\succ, 176
\succapprox, 176
\succcurlyeq, 176
\succeq, 176
\succsim, 176
\sum, 141, 144, 147, 155–157,

173
\sup, 158
\supset, 176
\supseteq, 176
\surd, 178
\swarrow, 177
\Switch, 183, 184

\t, 42
\tabcolsep, 55, 56
\tablename, 120
\tableofcontents, 3, 15, 29
\tan, 158
\tanh, 158
\tau, 143
\tcc, 185
\tcp, 183, 185, 186
\tcp*, 186
\TeX, 22, 27, 28, 31, 196, 203
\text, 140, 150, 151, 157, 164,

165, 173
\textasciicircum, 40
\textasciitilde, 40
\textbackslash, 39, 40, 197
\textbf, 41, 42, 49, 54, 62, 118,

120, 127, 129, 131, 133,
134

\textemdash, 44, 45
\textendash, 44
\textheight, 73, 216
\textit, 49

\textmd, 49
\textnormal, 49
\textrm, 49
\textsc, 49, 129, 181
\textsf, 49
\textsl, 49
\textstyle, 156
\texttt, 49, 80, 116, 117, 197
\textup, 49
\textvisiblespace, 10
\textwidth, 73, 134, 216
\thanks, 11
\theoremstyle, 168, 169
\therefore, 176
\Theta, 143
\theta, 143
\thetable, 120
\thickapprox, 176
\thicksim, 176
\thickspace, 174
\thinspace, 174
\tikz, 76, 77, 81–83, 85–88, 96,

103, 105, 106
\tikzset, 77, 102, 103, 107, 108,

111
\tikztonodes, 107, 108
\tikztostart, 107, 108
\tikztotarget, 107, 108
\tilde, 164
\times, 76, 150, 151, 165, 172,

175
\tiny, 48, 49
\title, 10, 11, 226, 232
\titlepage, 11
\to, 155, 158, 160, 166, 171
\tocdepth, 30
\top, 178
\toprule, 53, 54, 118, 120
\topsep, 63
\triangle, 178
\triangleleft, 175
\triangleright, 175
\ttfamily, 49, 188

\u, 42
\uCase, 184
\uElseIf, 182, 183

258

\uIf, 182, 183
\underbar, 164
\underbrace, 163–165
\underleftarrow, 164, 177
\underleftrightarrow, 164, 177
\underline, 164
\underrightarrow, 164, 177
\unlhd, 175
\unrhd, 175
\Uparrow, 154, 177
\uparrow, 154, 177
\Updownarrow, 154, 177
\updownarrow, 154, 177
\uplus, 175
\uproot, 162
\upshape, 49
\Upsilon, 143
\upsilon, 143
\usecounter, 64
\usepackage, 10, 11, 20, 22, 25,

34, 58, 62, 140, 169, 197,
210, 218, 219, 228, 241

\usetheme, 232
\usetikzlibrary, 89, 100, 110,

135

\v, 42
\value, 218
\varDelta, 143
\varepsilon, 142, 143
\varGamma, 143
\varkappa, 143
\varLambda, 143
\varOmega, 143
\varPhi, 143
\varphi, 143
\varPi, 143
\varpi, 143
\varpropto, 176
\varPsi, 143
\varrho, 142, 143
\varSigma, 143
\varsigma, 143
\varTheta, 143
\vartheta, 142, 143
\varUpsilon, 143
\varXi, 143

\Vdash, 176
\vDash, 176
\vdash, 176
\vdots, 170, 171
\vec, 164
\vee, 175
\vert, 152
\vline, 52, 56
\vphantom, 50, 151
\Vvdash, 176

\wedge, 175
\While, 181, 185
\whiledo, 218, 219
\widehat, 164
\widetilde, 163, 164
\widthof, 219
\wp, 178
\wr, 175

\x, 106
\xhookleftarrow, 177, 178
\xhookrightarrow, 177, 178
\Xi, 143
\xi, 143
\xLeftarrow, 177, 178
\xleftarrow, 177
\xleftharpoondown, 177, 178
\xleftharpoonup, 177, 178
\xLeftrightarrow, 177, 178
\xleftrightarrow, 177, 178
\xleftrightharpoons, 177, 178
\xmapsto, 177, 178
\xRightarrow, 177, 178
\xrightarrow, 177
\xrightharpoondown, 177, 178
\xrightharpoonup, 177, 178
\xrightleftharpoons, 177, 178
\xticklabels, 128

\y, 106
\yticklabels, 128

\zeta, 143

Resources 259

Index of Environments

abstract, 12
algorithm, 179, 180
algorithm*, 180
algorithm2e, 179, 181, 183, 184
align, 144, 147, 148
align*, 144, 149, 151, 172
aligned, 149
alignedat, 149
array, 51, 54, 56, 162
axis, 125–129, 131, 133–135

Bmatrix, 162
bmatrix, 162

cases, 151, 165
center, 50

description, 62
document, 10–12, 15, 17, 20, 25,

29, 34, 159, 160, 196,
197, 200, 203, 206, 214,
215, 218–220, 226, 228,
232

enumerate, 61, 62, 232
eqnarray, 150
equation, 144–146
equation*, 144, 145, 149

figure, 69–72, 180
figure*, 70, 72
flushleft, 51
flushright, 51
footnotesize, 48
frame, 194, 225–232
fullpage, 71
function, 180, 181
function*, 181

gather, 145, 147
gathered, 149

Huge, 48, 49
huge, 48

itemize, 59–61, 227, 230, 231

LARGE, 48
Large, 48
large, 48
leftfullpage, 71
letter, 34
list, 63–65
longtable, 119, 120
lstlisting, 186, 187
lstlistings, 187

matrix, 162
multline, 146

normalsize, 48, 49

pgfplots, 123
pmatrix, 162
procedure, 180
procedure*, 180
proof, 140, 166, 170

quotation, 47
quote, 47

scope, 103, 104
scriptsize, 48
sidewaysfigure, 119
sidewaystable, 119
small, 48
smallmatrix, 163
split, 145–147
subarray, 157
substack, 157

tabbing, 50, 56, 57, 162, 179
table, 113, 118, 180
table*, 118
tabular, 50–54, 56, 118–120
tabular*, 51, 54–56
theorem, 232
tikzpicture, 75–82, 84, 85, 89–

93, 95, 98–100, 103, 104,
107–110, 125, 127, 129,
131, 133, 134

tiny, 48
titlepage, 11

260

tt, 57

verse, 47, 48
Vmatrix, 162
vmatrix, 162

Resources 261

Index of Classes

acmcls, 140
amscls, 140
article, 3, 10, 11, 23, 25, 30,

33, 194, 196, 200, 220

beamer, 194, 225, 226, 228–230,
271

book, 30, 33

letter, 14, 33, 34

memoir, 35

report, 33

262

Index of Packages

amsmath, 154

algorithm2e, 179–185
amsbsy, 140
amscd, 140
amsfonts, 140
amsmath, 35, 139, 140, 143–146,

149, 150, 154, 156, 158–
162, 169, 171, 175

amsopn, 140
amssymb, 140
amstext, 140
amsthm, 140, 166, 169, 170
arrows, 88, 89

babel, 58
beamer, 75
beamerarticle, 227
bibtopic, 28
bibunits, 29
bidi, 58
booktabs, 53, 54, 118

calc, 100, 219
calctab, 121, 194
ccaption, 71
chapterbib, 29
circuits.logic.CDH, 110
circuits.logic.IEC, 110
circuits.logic.US, 110
classicthesis, 35
colortbl, 53
cool, xi, 158, 160
coverpage, 35
csvpie, 125

datatool, 120
dpfloat, 71

enumerate, 59, 61, 62
esint, 160, 161
etoolbox, 243

fancyhdr, 35
fontspec, 4, 237, 240, 241
fourier, 35

graphics, 74
graphicx, 35, 72

ifthen, 213, 217–219

keycommand, 209, 211
keyval, 35, 72, 209–211

lastpage, 35
lipsum, 194
listings, 35, 186, 188
longtable, 119

makerobust, 198
mathdesign, 175
mathptmx, 10, 11
mathtools, 35, 149
multibbl, 28
multibib, 28
multind, 30, 31

named, 22, 25
natbib, vii, 26, 27

pgf, 69, 75
pgfkeys, 102
pgfplot, 135
pgfplots, 69, 125, 126, 128, 130,

131, 135
pgfplotstable, 120
polyglossia, 58
prettyref, 19, 20, 35, 145

rotating, 119

siunitx, 173
spreadtab, 121

tikz, 69, 75, 76, 78, 83, 95, 97,
99, 100, 102, 109, 225,
230, 244, 271

tkz-berge, 245

url, 35

xcolor, 83, 84
xkeyval, 35

Resources 263

Index of Commands and Languages

./install-tl.sh, 237, 238

ANSI C, 186
ANSI C++, 186
apt-get, 237, 241

bibtex, 3, 24–26, 29, 31

cd, 238

Debian, 241
debian, 4
dvipdf, 7
dvips, 7

eclipse, 4, 6
Eiffel, 186
emacs, 6, 8
epstopdf, 74
excel, 124
export, 238, 239

fc-cache, 240

GhostScript, 74
ghostview, 245
gimp, 74
gnuplot, 71, 74
gs, 74
gsview, 245

HTML, 186

install-tl.sh, 237
ispell, 58

Java, 186

latex, 6–8, 12, 13, 16–19, 24,
25

Linux, 4
lisp, xvii, 220
luatex, 240
Lyx, 245

makeindex, 31
matlab, 125
metapost, 271

MikTex, 245
mkdir, 237
mount, 237
mpost, 74

pdflatex, 3, 7, 8, 108
PHP, 186
Python, 186

rmdir, 238

texdoc, 27, 34
texhash, 239
Texniccenter, 245

Ubuntu, 241
ubuntu, 4
umount, 238
Unix, 4

vim, 6–8, 58

xdvi, 7
xelatex, 4, 43, 45, 58, 108
xetex, 240
XML, 186

264

Acronyms

ams American Mathematical Society

apl A Programming Language

ctan Comprehensive TEX Archive Network

cd Compact Disk

faq Frequently Asked Questions

gui Graphical User Interfaces

ide Integrated Development Environment

isbn International Standard Book Number

si International System of Units

tug TEX Users Group

wysiwyg What You See is What You Get

265

266

Bibliography

Abrahams, P. A., K. A. Hargreaves and K. Berry [2003]. TEX for the
Impatient. �is book is freely available from ftp://tug.org/tex/
impatient. Addison–Wesley.

Adriaens, Henri [2008]. �e xkeyval Package. Version v2.6a.
Allan, Robert [2001]. Punctuation. Oxford University Press. isbn:

0-19-860439-4.
American Mathematical Society [2002]. User’s Guide for the amsmath

Package. Version 2.0.
— [2004]. Using the amsthm Package. Version 2.20.
Arseneau, Donald [2010]. url.sty Version 3.3. Edited as a LATEX docu-

ment by Robin Fairbairns.
Aslaksen, Helmer [1993]. “Ten TEX Tricks for the Mathematician”. In:

TUGboat, Communications of the TEX Users Group 14. A modern
version of this paper is available from http://www.math.nus.edu.
sg/aslaksen/cs/tug-update.pdf, pp. 135–136.

Bigwood, Sally and Melissa Spore [2003]. Presenting Numbers, Tables,
and Charts. Oxford University Press. isbn: 0-19-860722-9.

Bovani, Michel [2005]. Fourier GUTenberg.
Braams, Johannes et al. [2001]. �e LATEX2ε Sources. url: http://www.

tug.org/texlive/Contents/live/texmf-dist/doc/latex/base/
source2e.pdf.

Breitenbucher, Jon [2005]. “LATEX at a Liberal Arts College”. In: �e
PracTEX Journal 3. url: http://www.tug.org/pracjourn/index.
html.

Buchsbaum, Arthur and Francisco Reinaldo [2007]. “A Tool for Lo-
gicians”. In: �e PracTEX Journal 3. url: http://www.tug.org/
pracjourn/index.html.

Burt, John [2005]. “Using poemscol for Critical Editions of Poetry”.
In: �e PracTEX Journal 3. url: http://www.tug.org/pracjourn/
index.html.

Carlisle, D. P. [2003]. Packages in the graphics Bundle.
Carlisle, D. P. and S. P. Q. Ratz [1999]. �e graphicx Package.
Carlisle, David [1999a]. �e enumerate Package.
— [1999b]. �e keyval Package.
Chervet, Florent [2009]. �e keycommand Package.
Dearborn, Elizabeth [2006]. “TEX for Medicine”. In: �e PracTEX

Journal 4. url: http://www.tug.org/pracjourn/index.html.

267

ftp://tug.org/tex/impatient
ftp://tug.org/tex/impatient
http://www.math.nus.edu.sg/aslaksen/cs/tug-update.pdf
http://www.math.nus.edu.sg/aslaksen/cs/tug-update.pdf
http://www.tug.org/texlive/Contents/live/texmf-dist/doc/latex/base/source2e.pdf
http://www.tug.org/texlive/Contents/live/texmf-dist/doc/latex/base/source2e.pdf
http://www.tug.org/texlive/Contents/live/texmf-dist/doc/latex/base/source2e.pdf
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html

268

Eijkhout, V. [2004]. �e Computer Science of TEX and LATEX. url:
http://www.cs.utk.edu/~eijkhout/594-LaTeX/handouts/TeX%
20LaTeX%20course.pdf.

— [2007]. TEX by Topic, A TEXnician’s Reference. �is book is freely
available from http://www.eijkhout.net/tbt/. Addison–Wesley.
isbn: 0-201-56882-9.

Fenn, Jürgen [2006]. “Managing Citations and Your Bibliography with
BibTEX”. In: PracTEX Journal. url: http://www.tug.org/
pracjourn/2006-4/fenn/.

Feuersänger, Christian [2008]. Manual for Package pgfplotstable.
Version 1.1.

— [2010]. Manual for Package pgfplots. Version 1.3.
Fine, Jonathan [1992]. “Some Basic Control Macros for TEX”. In:

TUGboat 13.1.
Firio, Christophe [2004]. algorithm2e.sty — package for algorithms

release 3.3.
Garcia, Aracele and Arthur Buchsbaum [2010]. “About LATEX tools

that students of Logic should know”. In: �e PracTEX Journal 1. In
Portugese. url: http://www.tug.org/pracjourn/index.html.

Giacomelli, Roberto [2009]. calctab Package.
Goldberg, Je�rey P. [2010]. �e lastpage Package.
Goossens, M., F. Mittelbach and A. Samarin [1994]. �e LATEX Com-

panion. Addison–Wesley. isbn: 0-201-54199-8.
Goossens, M., S. Rahtz and F. Mittelbach [1997]. �e LATEX Graph-

ics Companion: Illustrating documents with TEX and PostScript.
Addison–Wesley. isbn: 0-201-85469-4.

— [1999]. �e LATEX Web Companion: Integrating TEX, HTML, and
XML. Addison–Wesley. isbn: 0-201-43311-7.

Graham, R.L., D.E. Knuth and O. Patashnik [1989]. Concrete Mathe-
matics: A Foundation for Computer Science. Addison-Wesley. isbn:
0-201-14236-8.

Hagen, Hans. Making MetaPost Outlines.
— [2002]. METAFUN. url: http://wiki.contextgarden.net/

MetaFun.
Heck, André [2005a]. Learning LATEX by Doing. url: http://www.

science.uva.nl/onderwijs/lesmateriaal/latex/latexcourse.
pdf.

— [2005b]. Learning METAPOST by Doing. url: http://remote.
science.uva.nl/~heck/Courses/mptut.pdf.

Heinz, Carsten and Brooks Moses [2007]. �e Listings Package. Ver-
sion 1.4.

Høgholm, Marten [2010]. �e mattools Package.
Hurlin, Clément [2007]. Practical Introduction to METAPOST. url:

http : / / www - sop . inria . fr / everest / personnel / Clement .
Hurlin/misc/Practical-introduction-to-MetaPost.pdf.

Kern, Uwe [2007]. Extending LATEX’s color facilities: xcolor.

http://www.cs.utk.edu/~eijkhout/594-LaTeX/handouts/TeX%20LaTeX%20course.pdf
http://www.cs.utk.edu/~eijkhout/594-LaTeX/handouts/TeX%20LaTeX%20course.pdf
http://www.eijkhout.net/tbt/
http://www.tug.org/pracjourn/2006-4/fenn/
http://www.tug.org/pracjourn/2006-4/fenn/
http://www.tug.org/pracjourn/index.html
http://wiki.contextgarden.net/MetaFun
http://wiki.contextgarden.net/MetaFun
http://www.science.uva.nl/onderwijs/lesmateriaal/latex/latexcourse.pdf
http://www.science.uva.nl/onderwijs/lesmateriaal/latex/latexcourse.pdf
http://www.science.uva.nl/onderwijs/lesmateriaal/latex/latexcourse.pdf
http://remote.science.uva.nl/~heck/Courses/mptut.pdf
http://remote.science.uva.nl/~heck/Courses/mptut.pdf
http://www-sop.inria.fr/everest/personnel/Clement.Hurlin/misc/Practical-introduction-to-MetaPost.pdf
http://www-sop.inria.fr/everest/personnel/Clement.Hurlin/misc/Practical-introduction-to-MetaPost.pdf

Resources 269

Knuth, D. E. [1990]. �e TEXbook. �e source of this book is freely
available from http://www.ctan.org/tex-archive/systems/
knuth/tex/. Addison–Wesley. isbn: 0-201-13447-0.

Krab �orub, Kresten, Frank Jensen and Chris Rowley [2005]. �e calc
Package In�x notation arithmetic in LATEX.

Krishnan, E., ed. [2003]. LATEX Tutorials A Primer. url: http://www.
tug.org.in/tutorials.html.

Lamport, L. [1994]. LATEX: A Document Preparation System. Addison–
Wesley. isbn: 0-021-52983-1.

Maltby, Gavin [1992]. An Introduction to TEX and Friends. url: http:
//citeseer.ist.psu.edu/maltby92introduction.html.

Miede, André [2010]. �e Classic �esis Style.
Mühlich, Matthias [2006]. �e CoverPage Package. Version 1.01.
Oetiker, Tobias et al. [2007]. �e Not so Short Introduction to LATEX2ε.

url: http://tobi.oetiker.ch/lshort/.
Oostrum, Piet van [2004]. Page Layout in LATEX.
Pakin, Scot [2005]. �e Comprehensive LATEX Symbol List. url: http://

tug.ctan.org/info/symbols/comprehensive/symbols-letter.
pdf.

— [2006]. �e Visual LATEX FAQ. url: http://http://tug.ctan.
org/tex-archive/info/visualFAQ.

Peyton Jones, S. and J. Hughes [1999]. Haskell 98: A Non-strict, Purely
Functional Language. http://www.haskell.org/onlinereport/.

Peyton Jones, Simon L., John Huges and John Launchberry [1993].
“How to Give a Good Research Talk”. In: ACM SIGPLAN Notices
28.11, pp. 9–12. url: http://research.microsoft.com/en-
us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.
htm.

Reckdahl, Keith [2006]. Using Imported Graphics in LATEX and pdfLATEX.
url: ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.pdf.

Rein, Hanno. LATEX Co�ee Stains. url: http://hanno-rein.de/
archives/349.

Robertson, Will [2008]. �e fontspec Package.
Ruland, Kevin S. [2007]. Improved Reference Formatting for LATEX2ε.
Schattschneider, Doris [1990]. M. C. Escher Visions of Symmetry. New

York: W. H. Freeman and Company. isbn: 0-7167-2126-0.
Sedgewick, R. and P. Flajolet [1996]. An Introduction to the Analysis of

Algorithms. Addison–Wesley Publishing Company. isbn: 0-201-
40009-X.

Senthil, Kumar M. [2007]. “LATEX Tools for Life Scientists
(BioTEXniques?)” In: �e PracTEX Journal 4. url: http://www.
tug.org/pracjourn/index.html.

Talbot, Nicola [2007]. datatool v 1.01: Database and data manipulation.
Tantau, Till [2010]. TikZ & PGF. Manual for Version 2.00-cvs.
Tantau, Till, Joseph Wright and Vedran Miletić [2010]. �e beamer

Class. Version 3.10.
Tellechea, Christian [2010]. spreadtab v0.3.

http://www.ctan.org/tex-archive/systems/knuth/tex/
http://www.ctan.org/tex-archive/systems/knuth/tex/
http://www.tug.org.in/tutorials.html
http://www.tug.org.in/tutorials.html
http://citeseer.ist.psu.edu/maltby92introduction.html
http://citeseer.ist.psu.edu/maltby92introduction.html
http://tobi.oetiker.ch/lshort/
http://tug.ctan.org/info/symbols/comprehensive/symbols-letter.pdf
http://tug.ctan.org/info/symbols/comprehensive/symbols-letter.pdf
http://tug.ctan.org/info/symbols/comprehensive/symbols-letter.pdf
http://http://tug.ctan.org/tex-archive/info/visualFAQ
http://http://tug.ctan.org/tex-archive/info/visualFAQ
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/giving-a-talk.htm
ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.pdf
http://hanno-rein.de/archives/349
http://hanno-rein.de/archives/349
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html

270

�e LATEX3 Project [2001a]. LATEX2ε Font Selection. url: http://www.
latex-project.org/guides/fntguide.tex.

— [2001b]. LATEX2ε for Authors. url: http://www.latex-project.
org/guides/usrguide.tex.

— [2001c]. LATEX2ε for Class and Package Writers. url: http://www.
latex-project.org/guides/clsguide.tex.

�e LATEX3 Project [2001]. Con�guration Options for LATEX2ε. url:
http://www.latex-project.org/guides/cgfguide.tex.

�omson, A. J. and A. V. Martinet [1986a]. A Practical English Grammar.
Fourth Edition. Oxford University Press. isbn: 0-19-431342-5.

— [1986b]. A Practical English Grammar, Exercises 1. �ird Edition.
Oxford University Press. isbn: 978-0-19-431343-8.

— [1986c]. A Practical English Grammar, Exercises 2. �ird Edition.
Oxford University Press. isbn: 978-0-19-431344-5.

�omson, Paul A. [2008a]. “Clinical Trials Management on the Internet
— I. Using LATEX and SAS to Produce Customized Forms”. In: �e
PracTEX Journal 3.

— [2008b]. “Clinical Trials Management on the Internet — II. Using
LATEX, PostScript, and SAS to Produce Barcode Label sheets”. In:
�e PracTEX Journal 3. url: http://www.tug.org/pracjourn/
index.html.

Trask, R. L. [1997]. Penguin Guide to Punctuation. Penguin Books.
isbn: 0-140-51366-3.

Veytsman, Boris and Leila Akhmadeeva [2006]. “Drawing Medical
Pedigree Trees with TEX and PSTricks”. In: �e PracTEX Journal 4.
url: http://www.tug.org/pracjourn/index.html.

Voß, Herbert [2008]. Tabellen mit LATEX. Lehmanns / Dante e.V. isbn:
9783865412591.

— [2009]. Math Mode — v. 2.43. CHECK THIS.
Wilson, Peter [2010]. �e Memoir Class. Maintained by Lars Madsen.
Wright, Joseph [2008]. siunitx — A Comprehensive (SI) units package.

http://www.latex-project.org/guides/fntguide.tex
http://www.latex-project.org/guides/fntguide.tex
http://www.latex-project.org/guides/usrguide.tex
http://www.latex-project.org/guides/usrguide.tex
http://www.latex-project.org/guides/clsguide.tex
http://www.latex-project.org/guides/clsguide.tex
http://www.latex-project.org/guides/cgfguide.tex
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html
http://www.tug.org/pracjourn/index.html

Acknowledgements

Thisbookwould not have been possible without the help of many. First
of all, I should like to express my gratitude to Don Knuth for writing TEX
and to Leslie Lamport for writing LATEX — without them the landscape
of typesetting would have been dominated by Bill. I should like to
Hans Hagen for much metapost inspiration. I am extremely grateful
to Till Tantau for writing his beautiful tikz package and his beamer
class. Both of them are stars in terms of functionality, productivity, and
documentation. I should like to acknowledge David Farley for letting
me include the cartoon which is depicted in Figure 4.2. More cartoons
like this may be found on http://ibiblio.org/Dave/. I should like to
thank Rik Kabel, Luca Mercriadri, Oleg Paraschenk, and Joseph Wright
for useful comments on an early dra�. �eir comments have been more
than helpful. Finally, I should like to thank all those who have worked on
LATEX and friends, all those who have supported LATEX and friends, and
all who have answered all my LATEX and METAPOST questions over the
last two decades or so. �e following are but a few: André Heck, Barbara
Beeton, Cristian Feuersänger, Dan Luecking, David Carlisle, David
Kastrup, Denis Roegel, Donald Arseneau, D.P. Story, Frank Mittelbach,
Hans Hagen, Heiko Oberdiek, Jim Hefferon, John Hobby, Jonathan
Fine, Jonathan Kew, Kees van der Laan, Keith Reckdahl, Kjell Magne
Fauske, Mark Wibrow, Nelson Beebe, Peter Flynn, Peter Wilson, Philipp
Lehman, Rainer Schöpf, Robin Fairbairns, Ross Moore, Scot Pakin,
Stephan Hugel, Taco Hoekwater, �omas Esser, Ulrike Fisher, Victor
Eijkhout, Vincent Zoonekynd, Will Robertson, and all the many, many
others. Without them the TEX community would have been much worse
o�.

271

http://ibiblio.org/Dave/

Colophon
This bookwas typeset with pdfLATEX. �e
main text was typeset using the book class
using Adobe Garamond Premier Pro at 12 pt
as the main font of the text and Anonymous
Pro for the monospaced font. �e page, �g-
ure, and table layout was achieved with a
user-de�ned class. �e mathdesign, ams-
math, and amssymb packages were used to
help typeset the mathematics. �e bibliog-
raphy was typeset with the biblatex pack-
age. �e coverpage was drawn with the
help of a little tikzfigure that includes
a couple of METAPOST-generated pic-
tures. �e pictures are based on a drawing
by Escher [Schattschneider, 1990, Draw-
ing 109II on Page 207]. �e source code
of a similar METAPOST program may be
found at http://csweb.ucc.ie/~dongen/
mpost/Escher109.html. �e microtype
package was used with the options ex-
pansion=true and protrusion=true. You
may download the most recent version
of this book from http://csweb.ucc.ie/
~dongen/LaTeX-and-Friends.pdf.

http://csweb.ucc.ie/~dongen/mpost/Escher109.html
http://csweb.ucc.ie/~dongen/mpost/Escher109.html
http://csweb.ucc.ie/~dongen/LaTeX-and-Friends.pdf
http://csweb.ucc.ie/~dongen/LaTeX-and-Friends.pdf

	I Basics
	Introduction to LaTeX
	Pros and Cons
	Basics
	The TeX Processors
	From .tex to .dvi and Friends
	The Name of the Game
	Staying in Sync
	Writing a LaTeX Input Document
	The Abstract
	Spaces, Comments, and Paragraphs

	Document Hierarchy
	Minor Document Divisions
	Major Document Divisions
	The Appendix

	Document Management
	Labels and Cross-references
	Controlling the Style of References
	The Bibliography
	Basic Usage
	The bibtex Program
	The natbib Package
	Multiple Bibliographies
	Bibliographies at End of Chapter

	Reference Lists
	Table of Contents and Lists of Things
	Controlling the Table of Contents
	Controlling the Sectional Unit Numbering
	Indexes and Glossaries

	Class Files
	Packages
	Useful Classes and Packages
	Errors and Troubleshooting

	II Basic Typesetting
	Running Text
	Special Characters
	Tieing Text
	Grouping

	Diacritics
	Ligatures
	Quotation Marks
	Dashes
	Periods
	Emphasis
	Footnotes and Marginal Notes
	Displayed Quotations and Verses
	Line Breaks
	Controlling the Size
	Controlling the Type Style
	Phantom Text
	Alignment
	Centred Text
	Flushed/Ragged Text
	Basic tabular Constructs
	The booktabs Package
	Advanced tabular Constructs
	The tabbing Environment

	Language Related Issues
	Hyphenation
	Foreign Languages
	Spell-Checking

	Lists
	Unordered Lists
	Ordered Lists
	The enumerate Package
	Description Lists
	Making your Own Lists

	III Pictures, Diagrams, Tables, and Graphs
	Presenting External Pictures
	The figure Environment
	Special Packages
	Floats
	Legends

	External Picture Files
	The graphicx Package
	Setting Default Key Values
	Setting a Search Path
	Defining Graphics Extensions
	Conversion Tools
	Defining Graphics Conversion

	Presenting Diagrams with tikz
	Why Specify your Diagrams?
	The tikzpicture Environment
	The \tikz Command
	Grids
	Paths
	Coordinate Labels
	Extending Paths
	Actions on Paths
	Colour
	Drawing the Path
	Line Width
	Line Cap and Join
	Dash Patterns
	Arrows
	Filling a Path
	Path Filling Rules

	Nodes and Node Labels
	Predefined Nodes Shapes
	Node Options
	Connecting Nodes
	Special Node Shapes

	Coordinate Systems
	Coordinate Calculations
	Relative and Incremental Coordinates
	Complex Coordinate Calculations

	Options
	Styles
	Scopes
	The \foreach Command
	The let Operation
	The To Path Operation
	The spy Library
	Trees
	Logical Circuits
	Installing tikz

	Presenting Data with Tables
	The Purpose of Tables
	Kinds of Tables
	The Anatomy of Tables
	Designing Tables
	The table Environment
	Wide Tables
	Multi-page Tables
	Databases and Spreadsheets

	Presenting Data with Graphs
	The Purpose of Graphs
	Pie Charts
	Introduction to pgfplots
	Bar Graphs
	Paired Bar Graphs
	Component Bar Graphs
	Coordinate Systems
	Line Graphs
	Scatter Plots

	IV Mathematics and Algorithms
	Mathematics
	The A.5exMS-LaTeX Platform
	LaTeX's Math Modes
	Ordinary Math Mode
	Subscripts and Superscripts
	Greek Letters
	Displayed Math Mode
	The equation Environment
	The split Environment
	The multline Environment
	The gather Environment
	The align Environment
	Intermezzo: Increasing Productivity
	Interrupting a Display
	Low-level Alignment Building Blocks
	The eqnarray Environment

	Text in Formulae
	Delimiters
	Scaling Left and Right Delimiters
	Bars
	Tuples
	Floors and Ceilings
	Delimiter Commands

	Fractions
	Sums, Products, and Friends
	Basic Typesetting Commands
	Overriding the Basic Typesetting Style
	Multi-line Limits

	Functions and Operators
	Existing Operators
	Declaring New Operators
	Managing Content with the cool Package

	Integration and Differentiation
	Integration
	Differentiation

	Roots
	Arrays and Matrices
	Math Mode Accents, Hats, and Other Decorations
	Braces
	Case-based Definitions
	Function Definitions
	Theorems
	Ingredients of Theorems
	Theorem-like Styles
	Defining Theorem-like Environments
	Defining Theorem-like Styles
	Proofs

	Mathematical Punctuation
	Spacing and Linebreaks
	Line Breaks
	Conditions
	Physical Units
	Sets
	More Spacing Commands

	Changing the Style
	Symbol Tables
	Operation Symbols
	Relation Symbols
	Arrows
	Miscellaneous Symbols

	Algorithms and Listings
	Typesetting Algorithms with algorithm2e
	Importing algorithm2e
	Basic Environments
	Describing Input and Output
	Conditional Statements
	The Switch Statement
	Iterative Statements
	Comments

	Typesetting Listings with the listings Package

	V Automation
	Commands and Environments
	Why use Commands
	User-defined Commands
	Defining Commands Without Arguments
	Defining Commands With Arguments
	Fragile and Robust Commands
	Defining Robust Commands

	The TeX Processors
	Commands and Arguments
	Defining Commands with TeX
	Tweaking Existing Commands with \let
	More than Nine Arguments
	Introduction to Environments
	Environment Definitions

	Option Parsing
	Why Use a Key=Value Interface?
	The keyval Package
	The keycommand Package

	Branching
	Counters, Booleans, and Lengths
	Counters
	Booleans
	Lengths
	Scoping

	The ifthen Package
	The calc Package
	Looping
	Tail Recursion

	User-defined Styles and Classes
	User-defined Style Files
	User-defined Class Files

	VI Miscellany
	Beamer Presentations
	Frames
	Modal Presentations
	Incremental Presentations
	Visual Alerts
	Adding Some Style

	Installing LaTeX and Friends
	Installing TeX Live
	Configuring TeX Live
	Adjusting the PATH
	Configuring TEXINPUTS

	Installing Classes and Packages
	Installing LaTeX Fonts
	Installing Unix Fonts
	Using the fontspec Package
	Package Managers

	Resources
	Books about TeX and LaTeX
	Bibliography Resources
	Articles by the LaTeX3 Team
	LaTeX Articles, Course Notes and Tutorials
	Metapost Articles and Tutorials
	On-line Resources
	YouTube Resources
	English

	VII References and Bibliography
	Indices
	Index of LaTeX and TeX Commands
	Index of Environments
	Index of Classes
	Index of Packages
	Index of Commands and Languages

	Acronyms
	Bibliography

