
Some tips and tricks for LATEX

Y. Zwols (yz2198@columbia.edu)

February 27, 2012

Contents

1 A little bit on the internals of LATEX 2

1.1 Counters and lengths . 2

1.2 Commands . 4

1.2.1 Replacing existing LATEX commands . 7

1.3 Creating environments . 7

2 Useful tools for ‘debugging’ your LATEX document 9

2.1 The draft option . 9

2.2 Checking cross references with refcheck . 9

3 Using multiple files 10

3.1 Creating a style file (a.k.a. package) . 10

3.1.1 The layout of a .sty file . 10

3.1.2 Making sure LATEX can find your .sty file . 11

3.2 Separating documents into several files . 11

3.3 Generating tables with Matlab or C(++) . 11

4 Layout 14

4.1 Page headers and footers using fancyhdr . 14

4.1.1 Using the fancy style for the first page of chapters too 14

4.2 Indentation and paragraph skip . 14

4.3 Choosing fonts . 15

4.4 Minipages . 15

4.5 Changing section headings using sectsty . 15

1

4.6 Customizing enumerations using enumerate . 15

4.7 Table of contents . 15

4.8 Nice chapter headings using quotchap . 16

4.9 Nice fractions using nicefrac . 16

4.10 Including source code (C++/Matlab/...) . 16

4.11 Activating hyperlinks in PDF files . 16

4.12 Scaling boxes with scalebox . 16

5 Graphics 17

5.1 Inkscape . 17

5.2 TikZ . 17

6 Examples 20

6.1 Creating nice looking boxes . 20

6.2 Putting parenthesis around references to equations 21

7 Getting help 22

7.1 Package manuals . 22

2

1
A little bit on the internals of LATEX

Although you may not always realize it, LATEX is an actual (admittedly quite ugly) programming
language, just like C and Matlab. This means that it supports all sorts of constructs for making life
easier when you are editing papers or a thesis. In this section, we will go over some useful techniques
for the not-so-beginner LATEX user.

1.1 Counters and lengths

While the LATEX compiler compiles a document, it keeps track of a number of variables. LATEX has
two useful types of variables: counters and lengths. These variables have names, just like in any other
programming language. Like the names suggest, counters are used to count, and lengths are used to
measure lengths.

Counters Common counters include page (the current page number), section (the number of
the current section), subsection (the number of the current subsection), etc. At any point in your
document code, these variables are available to you. You can modify counters by using commands
like \stepcounter, setcounter. You can also create your own counters by using the command
\newcounter. Counters are mostly useful when defining your own commands and/or environments.
See Section ?? for an example.

At times, you may want to turn a counter into text. This can be done in several ways. Say you have
a counter mycounter. You can turn it into a numerical value using \arabic{mycounter}, into
a roman numeral using \roman{mycounter}, a letter \alph{mycounter} (not to be confused
with \alpha, which is the greek letter α), etc. The following example illustrates this:

3

\newcounter{mycounter}
\setcounter{mycounter}{1}
\arabic{mycounter}, \alph{mycounter}, \Alph{mycounter},
\roman{mycounter}, \Roman{mycounter}

\stepcounter{mycounter}
\arabic{mycounter}, \alph{mycounter}, \Alph{mycounter},
\roman{mycounter}, \Roman{mycounter}

This has the following output:

1, a, A, i, I
2, b, B, ii, II

Example 1.1.1: Counters

Lengths Common lengths include parindent, parskip (see ??), and many more. You can
change the values of length variables using the commands \setlength, \addtolength. Lengths
are always specified by a number and a unit. Common units are in (inch), pt (point), cm (centimeter).
Lengths are useful in many places. For example, if you want to make the width of tge columns in a
table uniform, you can either type the lengths multiple times, or use a length. For example:

\newlength\mycolwidth
\setlength\mycolwidth{0.5in}

\begin{tabular}{|p{\mycolwidth}|p{\mycolwidth}|p{\mycolwidth}|}
\hline
A & B & C\\
D & E & F \\
\hline
\end{tabular}

This code has the following output:

A B C
D E F

Example 1.1.2: Length variables

You can do some arithmetic with length variables as well. For example, you may want to make the
columns of your table about 1/3 of the page width, excluding margins. The length variable that
measures this width is called textwidth. The following example illustrates the arithmetic:

4

\newlength\mycolwidth
\setlength\mycolwidth{0.3\textwidth}

\begin{tabular}{|p{\mycolwidth}|p{\mycolwidth}|p{\mycolwidth}|}
\hline
A & B & C\\
D & E & F \\
\hline
\end{tabular}

This code has the following output:

A B C
D E F

Example 1.1.3: Length variable arithmetic

(Notice that I used 0.3\textwidth and not 0.33\textwidth. This is because the column width
specified in the p{...} argument in the tabular environment measures the width of the column
without the space between the columns. So the actual width of the column will exceed 3×colwidth.

1.2 Commands

Everyone is familiar with commands in LATEX, e.g. the commands \section, \textbf. I think that
knowing a little bit about the way these commands work internally in LATEX improves your programming
and debugging skills considerably.

The way LATEX deals with commands is quite easy: every command, except for a set of ‘primitive
commands’, has a definition. For example, the definition of the \section command contains all
sorts of commands for ending the current line, setting up the correct fonts and font sizes, keeping
track of the current section number, outputting the current section number and it titles, and starting
a new paragraph. The primitive commands include \setcounter, \addtolength, etc. Internally,
whenever the LATEX compiler sees a non-primitive command, it replaces the command by its definition.
So whenever you type \section{Introduction}, this command is expanded ‘under water’ to a
much longer command. Thus, commands can be thought of as ‘subroutines’. Many commands are
part of the LATEX distribution, but you can also create your own commands.

For example, in many documents, I find myself using the same commands over and over again. For
example, I use the symbol R for the set of real numbers many times. Instead of writing \mathbb{R},
I prefer to keep it short. To achieve this goal, I always define at the beginning of every document a
new command named \dR (actually I don’t exactly do that – see Section ??). Now, whenever I want
to use the symbol R, I just write \dR. The following example shows how to do this:

5

\newcommand\dR{\mathbb{R}}
\newcommand\cP{\mathcal{P}}
...
Let $x\in \dR$. Let \cP be the set of all perfect graphs. ...

Example 1.2.1: Simple commands

When this code is fed to the LATEX compiler, whenever it comes accross the command \dR, it is
replaced immediately by the code \mathbbR, which in turn is replaced by whatever the definition of
\mathbb is (this probably involves selecting a different font, but we don’t particularly care about that
right now). Notice that the outer curly braces in the first line of the example are NOT part of the
definition of \dR. Only the command inside the outer curly braces count. This is sometimes important
as the following example shows. In this example, there are two commands. \myname changes the
font to italic and then displays my name. The second command, \mynamebetter does exactly the
same, but it has an extra set of curly braces. This makes sure that after writing my name, the font
is reset to what it was before.

\newcommand\myname{\it Yori Zwols}
\newcommand\mynamebetter{{\it Yori Zwols}}

\normalfont\myname~is my name.

\normalfont\mynamebetter~is my name.

This has the following output:

Yori Zwols is my name.
Yori Zwols is my name.

The reason is that this code gets expanded as follows:

\normalfont\it Yori Zwols~is my name.

\normalfont{\it Yori Zwols}~is my name.

Example 1.2.2: Curly braces in command definitions

As said, one can think of these commands as subroutines (or functions) in your document, which
suggests that it is possible to add arguments to a command. This is indeed possible and very useful.
For example, I don’t like writing \{1, 2, \hdots, n\} or \{1, 2, \hdots, n\} many times
for typesetting the sets {1, 2, . . . , n} and {1, 2, . . . , k}. Therefore, I always define a command named
\enum, which stands for enumeration. The following example illustrates this:

6

\newcommand\enum[1]{\ensuremath{\{1, 2, \hdots, #1\}}}
Let $i\in \enum{n}$ and $j\in \enum{k}$. The set \enum{k} is ...

\newcommand\enumb[2]{\ensuremath{\{#1, \hdots, #2\}}}
Let $q\in \enumb{5}{n}$.

\newcommand\advenum[2][1]{\ensuremath{\{#1, \hdots, #2\}}}
Let $i\in \advenum{n}$ and let $q \in \advenum[5]{n}$.

This code has the following output:

Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k}. The set {1, 2, . . . , k} is ...
Let q ∈ {5, . . . , n}.
Let i ∈ {1, . . . , n} and let q ∈ {5, . . . , n}.

Example 1.2.3: Commands with arguments

The lines with command definitions of this example may seem a bit cryptic. In the first line, we are
defining a new command called \enum. The part ‘[1]’ means that the command will take exaclty
one argument. The ensuremath part makes sure that whenever we use the \enum command, the
part inside the ensuremath command is typeset in mathematics mode (notice that in the last line,
we use the \enum command both in math mode and in normal text mode). Finally, the ‘#1’ shows
the LATEX compiler where to insert the text that is given as an argument to the \enum command.
The second command we define, \enumb, shows how to define more than one argument. The third
commandm \advenum shows how to use optional arguments. The ‘[2]’ means that the command
takes in principle two arguments. However, the next ‘[1]’ says that the default value of the first
argument is ‘1’. Now, we can use \advenum in two ways: either we can specify one argument, and
let the lower bound of the enumeration be 1, or we can specify two arguments, but we have to specify
the first argument with square brackets.

This example also illustrates another good point: I sometimes decide not to use {1, 2, . . . , n} for these
standard sets of integers, but instead I decided to use the notation [n]. By changing the first line of
??, one can easily change the way any enumeration is typeset throughout the document, so no need
to edit every single occurrence:

\newcommand\enum[1]{\ensuremath{[#1]}}
...
Let $i\in \enum{n}$ and $j\in \enum{k}$. The set \enum{k} is ...

Example 1.2.4

7

1.2.1 Replacing existing LATEX commands

In the definitions in the previous section, we always created new commands. Sometimes, you want to
redefine an already existing command. This can be done by using the \renewcommand instead. For
example, I redefine the \Re and \Im (for the real and imaginary part of a complex number) commands
as follows:

\renewcommand{\Re}{\mathop{\rm Re}}
\renewcommand{\Im}{\mathop{\rm Im}}

Example 1.2.5

A problem occurs when you want to redefine a command, but still use the old version of the command
inside the new definition. If you do this in the straightforward way (i.e. redefine the command and
refer to the same command), you will end up with a circular definition and your LATEX document
will not compile. The proper way to tackle this, is to make a copy of the original command. As an
example, the following code shows how make all citations boldface.

\let\oldcite=\cite
\renewcommand\cite[1]{{\normalfont\textbf{\oldcite{#1}}}}

Example 1.2.6

The code works as follows: we first make a copy of the original command \cite and call this copy
\oldcite. Then, we redefine the \cite command, and use the copy \oldcite to cite.

1.3 Creating environments

Another useful construction that you are familiar with is environments. Environments are like com-
mands, but they have the advantage that you don’t have to put the argument within curly braces.
Instead, environments start with a \begin{...} command and end with a \end{...} command.
Like commands, environments are expanded internally by the LATEX compiler.

Creating your own environments is as easy as creating new commands. For example, I sometimes
have equations that I don’t want to number, but I want to give them a text label. I call these ‘named
equations’.

8

\newenvironment{namedeq}[1]%
{ \renewcommand{\theequation}{#1}%

\begin{equation}%
}%
{ \end{equation}%

\renewcommand{\theequation}{\arabic{equation}}%
\addtocounter{equation}{-1}%

}
...
\begin{namedeq}{LP1} \label{linearprogram}
\min c^Tx \mbox{ subject to } Ax \leq b, x\geq 0
\end{namedeq}
\eqnref{linearprogram} is a generic linear program.

This code gets expanded as follows:

\newenvironment{namedeq}[1]%
{ %
}%
{
}

...
\renewcommand{\theequation}{LP1}
\begin{equation} \label{linearprogram}
\min c^Tx \mbox{ subject to } Ax \leq b, x\geq 0
\end{equation}%
\renewcommand{\theequation}{\arabic{equation}}%
\addtocounter{equation}{-1}

\eqnref{linearprogram} is a generic linear program.

This has the following output:

min cT x subject to Ax ≤ b, x ≥ 0 (LP1)

(??) is a generic linear program.

Example 1.3.1

Notice the use of counters in this example: the counter equation keeps track of the number of
the current equation. The command \begin{equation} automatically increases the equation
counter by one, but since we decided to give the equation a name instead of a number, there is no need
to increase the counter. Hence the command \addtocounter{equation}{-1}, which decreases
the counter by one again.

9

2
Useful tools for ‘debugging’ your LATEX document

2.1 The draft option

By specifying the draft option ...

2.2 Checking cross references with refcheck

10

3
Using multiple files

When creating large documents, for example a Ph.D. thesis, it is tempting to put all the LATEX code
into one big file. Although this will compile completely fine, it becomes hard to manipulate such large
files. The section deals with ways to divide a large document into separate files.

3.1 Creating a style file (a.k.a. package)

I tend to use the same definitions over and over again throughout different documents. Therefore,
instead of copying and pasting these definitions into every new file, I have one personal package which
I called yzdefs. Now, whenever I create a new LATEX file, I just type \usepackage{yzdefs} and
I get all my standard definitions and packages for free. In this section, we will go through the process
of creating a package.

3.1.1 The layout of a .sty file

A .sty file is not much different from a .tex file. The main difference is that it does not include any
commands that directly output text. It should only contains definitions. Also, you never compile a .sty
file directly. Rather, you use the \usepackage command to load it into a .tex file. The following
example illustrates how to create you own package, which I have named mypackage.sty:

11

\NeedsTeXFormat{LaTeX2e}[1995/12/01]
\ProvidesPackage{mypackage}[My personal LaTeX definitions]

\RequirePackage{times}

\newcommand\dR{\mathbb{R}}
\newcommand\cP{\mathcal{P}}
\newcommand\enum[1]{\ensuremath{\{1, 2, \hdots, #1\}}}

Example 3.1.1: mypackage.sty, an example package

The first two lines of this example form the header of the package. The important part is that the
name of the package is correct in the second line, or you will get warnings when you compile your
document. The command \RequirePackage is the package-equivalent of \usepackage. In this
case, we load the Times New Roman fonts as default fonts. The last three lines define commands as
before.

3.1.2 Making sure LATEX can find your .sty file

In order to be able to use your newly created package, you have to make sure that the .sty file is
available to the LATEX compiler. You can do this by copying the .sty file to the directory in which
you have a document that requires the package, but the problem is that you will have to make many
copies of the same file. Hence, if you want to change the .sty file, you’ll have to update all copies.
A nicer way to make sure that LATEX can find your package, is by installing it into your ‘local texmf
directory’. This directory can be found either in c:\tex\localtexmf (for MiKTeX on Windows),
or ∼/texmf (for Linux or MacOS). To install it properly, you should create a new subdirectory in the
tex\latex directory and put your package in that new subdirectory. For example, I put my yzdefs
package in the directory c:\tex\localtexmf\tex\latex\yzdefs directory on Windows, and
in the ∼/texmf/tex/latex/yzdefs directory on Linux. The name of the directory does not
necessarily have to be the same as the name of your package.

3.2 Separating documents into several files

3.3 Generating tables with Matlab or C(++)

Now that we know how to include files into our main document, this opens a useful technique:
automatically generating tables. The following two examples show how to automatically generate a
LATEX table from Matlab and C.

12

% open file for writing text to
f = fopen(’table1.tex’, ’wt’);

% write beginning of table
fprintf(f, ’\\begin{tabular}{|c|rrr|}\n’);
fprintf(f, ’\\hline\n’);
fprintf(f, ’\\textbf{Sample} & 1 & 2 & 3\\\\\n’);
fprintf(f, ’\\hline\n’);

% write contents of table
for i = 1:10

fprintf(f, ’%d & %0.2f & %0.2f & %0.2f \\\\\n’, i, ...
rand, rand, rand);

end

% write end of table
fprintf(f, ’\\hline\n’);
fprintf(f, ’\\end{tabular}\n’);

% close file
fclose(f);

Example 3.3.1: Matlab code to generate a LATEX table

13

#include <stdio.h>

double randu()
{

return (rand() % 1000) / 1000.0;
}

int main()
{

int i;

// open file for writing text to
FILE* f = fopen("table1.tex", "wt");

// write beginning of table
fprintf(f, "\\begin{tabular}{|c|rrr|}\n");
fprintf(f, "\\hline\n");
fprintf(f, "\\textbf{Sample} & 1 & 2 & 3\\\\\n");
fprintf(f, "\\hline\n");

// write contents of table
for (i = 1; i <= 10; i++)
fprintf(f, "%d & %0.2f & %0.2f & %0.2f \\\\\n",

i, randu(), randu(), randu());

// write end of table
fprintf(f, "\\hline\n");
fprintf(f, "\\end{tabular}\n");

// close file
fclose(f);

}

Example 3.3.2: C code to generate a LATEX table

14

4
Layout

4.1 Page headers and footers using fancyhdr

4.1.1 Using the fancy style for the first page of chapters too

The fancyhdr package sets up fancy headers for all pages, except for the first page of every chapter.
There is a simple remedy to fix this:

\fancypagestyle{plain}

4.2 Indentation and paragraph skip

There are two length variables that I tend to change at the beginning of any document, namely
parindent and parskip. The length variable parindent represents the amount of indentation
for every paragraph. The variable parskip represents the amount of space between paragraphs. The
values of these variables can be changes as described in Section ?? For example:

15

\setlength\parindent{0pt}\setlength\parskip{16pt}
The purpose of this example is to illustrate how to use {\tt parindent} and
{\tt parskip}. This is a paragraph without indentation.

As you can see, to make up for it, there is space between paragraphs. \medskip

\hrule\medskip

\setlength\parindent{16pt}\setlength\parskip{0pt}
The purpose of this example is to illustrate how to use {\tt parindent} and
{\tt parskip}. This is a paragraph with indentation.

Clearly, now it is not necessary to set the {\tt parskip}
variable to a high value.

This code has the following output:

The purpose of this example is to illustrate how to use parindent and parskip.
This is a paragraph with no indentation.

As you can see, to make up for it, there is space between paragraphs.

The purpose of this example is to illustrate how to use parindent and parskip.
This is a paragraph with indentation.

Clearly, now it is not necessary to set the parskip variable to a high value.

Example 4.2.1: Setting parindent and parskip

4.3 Choosing fonts

4.4 Minipages

4.5 Changing section headings using sectsty

4.6 Customizing enumerations using enumerate

4.7 Table of contents

\setcounter{tocdepth}{2}
\setcounter{secnumdepth}{5}

16

4.8 Nice chapter headings using quotchap

4.9 Nice fractions using nicefrac

4.10 Including source code (C++/Matlab/...)

4.11 Activating hyperlinks in PDF files

\definecolor{linkcolor}{rgb}{0, 0, 0}

\hypersetup{
unicode=true, % non-Latin characters in AcrobatâĂŹs bookmarks
pdftoolbar=true, % show AcrobatâĂŹs toolbar?
pdfmenubar=true, % show AcrobatâĂŹs menu?
plainpages,
pdffitwindow=false, % window fit to page when opened
pdfstartview={FitH}, % fits the width of the page to the window
pdftitle={TITLE}, % title (appears in Acrobat’s title bar)
pdfauthor={AUTHOR}, % author
colorlinks=true,
linkcolor=linkcolor,
citecolor=linkcolor,
filecolor=linkcolor,
urlcolor=linkcolor

}

Example 4.11.1: PDF hyperlinks

4.12 Scaling boxes with scalebox

17

5
Graphics

Adding graphics to a LATEX document is not always straightforward. In this section, we will talk
about two different ways of adding high-quality graphics to your document. By ‘high-quality’ I mean
the following. There are two fundamentally different types of images: ‘bitmap’ images and ‘vector’
images. Bitmap images are basically stored as a matrix in which the entries correspond to the color
of each pixel in your image. Bitmap images are very useful for photographs, but not so much for
diagrams. In contrast, vector graphics are stored by the ‘objects’ contained in them. For example,
it would contain entries like ‘draw a line here ..’ and ‘draw a circle there’. The main advantage of
vector graphics is that they remaing good-looking when scaled. This is not true for bitmap images:
when you zoom in on a bitmap, the pixels will become visible and this looks quite ugly. Therefore, for
diagrams, it is better to use vector graphics.

In this section we will first talk about a way of making vector graphics the ‘what-you-see-is-what-you-
get’ way, using a program called Inkscape. The second part of the section talks about a programmer’s
way of creating graphics, using PGF and TikZ.

5.1 Inkscape

5.2 TikZ

Installing PGF and TikZ

Creating a TiKZ figure TikZ figures are usually surrounded by the \begin{tikzpicture} and
\end{tikzpicture} commands. Between these commands the TikZ language is in effect. The

18

TikZ language is relatively straightforward. For example:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (1);
\end{tikzpicture}

This has the following output:

Example 5.2.1: My first TikZ code

In this example, we give three command to TikZ: each command consists of the \draw command,
followed by instructions on what to draw, and ended by a semicolon. For example, in each of the first
two lines, we issue a command to draw a line between two points. In the third line, we draw a circle
with center (0, 0) and radius 1.

We can also change properties (i.e. line width, and rounding) of the objects to be drawn by adding
some arguments to the \draw command. For example:

\begin{tikzpicture}
\draw[thick,rounded corners=8pt] (0,0) -- (0,2) -- (1,3.25)
-- (2,2) -- (2,0) -- (0,2) -- (2,2) -- (0,0) -- (2,0);
\end{tikzpicture}

This has the following output:

Example 5.2.2: Rounded corners

The possibilities with TikZ are practically endless, and it takes a 560-page manual to go through all
of it. See:

19

http://www.ctan.org/tex-archive/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf.

20

6
Examples

6.1 Creating nice looking boxes

Next, let us look at how I created the example boxes in this document:

21

\tikzstyle{nicebox}=[draw=gray!100, fill=blue!10, very thick,
rounded corners, rectangle, inner sep=4pt, inner ysep=16pt]

\tikzstyle{niceboxtitle}=[draw=gray!100, fill=white, text=black,
rounded corners, very thick, rectangle]

\newcommand\nicebox[2]{
{\centering
\begin{tikzpicture}

\node [nicebox](box){
\begin{minipage}{0.95\textwidth}\centering
\begin{minipage}{0.95\textwidth}

#2
\end{minipage}\end{minipage}};

\node[niceboxtitle, right=10pt] at (box.north west)
{\small\textbf{#1}};

\end{tikzpicture}\par}
}

This example creates a new command named \nicebox. It can be used for example as
follows: \nicebox{Title}{This is the content of my box}, which results in
the following box:

This is the content of my box

Title

Example 6.1.1: Example boxes

6.2 Putting parenthesis around references to equations

A useful command I like to define is eqnref, which makes just a reference to an equation, but puts
the parentheses around the equation number:

\newcommand\eqnref[1]{(\ref{#1})}

Example 6.2.1

22

7
Getting help

Getting help on LATEX is relatively easy due to the fact that it has a huge userbase. The most
important thing to remember is the following: whenever you encounter a problem or difficulty, with
high probability some other person on the internet has encountered it. Is there something you want
to implement in your document but you can’t figure out how? Again, almost surely someone else
has thought about the same problem and thought of a solution. And if you’re lucky, there is even a
package available for doing whatever you want to do. Google is the answer to almost all your (LATEX)
questions.

7.1 Package manuals

Besides particular problems, you may want to find out how to work with a specific package. Packages
may have many options to customize its behavior. A good way to find the manual of a package, say
quotchap, is to just Google for the name of the package and the word ‘package’. So for example,
to get the manual for quotchap, I Google for ‘quotchap package’. The first result I get today is the
user manual in PDF format.

Most package manuals have approximately the same structure. They start with an introduction
describing what the package does. Then it contains documentation on what options the package has,
and (hopefully) some examples on how to use it. Finally, there is usually an Implementation section,
which describes the internal workings of the package.

I think that reading the manual is generally not necessary: just try to pick what you need. For example,
I usually ignore the implementation part, unless I really have to. Sections on options and examples
tend to be the most useful.

23

