
Yihui Xie

Dynamic Documents with R
and knitr

Note

This PDF document only contains the first three chapters, released
with permission of Chapman & Hall. The complete book is available
on Amazon (http://www.amazon.com/gp/product/1482203537).

For those who are interested in writing a book with Chapman &
Hall, the LYX and Rnw source files are freely available in the repository
https://github.com/yihui/knitr-book. Hopefully this template can
help beginners eliminate 90% of the possible LATEX problems, e.g.,

• make odd-numbered pages recto, and even-numbered pages verso

• leave a desired number of blank pages (note that eventually you
should remove this page, since this page is here only for trim marks
to be correctly generated on blank pages)

• different page numbering styles

• correct order of the items in the table of contents

• blank pages after each chapter

• ...

http://www.amazon.com/gp/product/1482203537
https://github.com/yihui/knitr-book

To my parents

Shaobai Xie and Guolan Xie

Contents

Preface xv

Author xxi

List of Figures xxiii

List of Tables xxv

1 Introduction 1

2 Reproducible Research 5
2.1 Literature . 5
2.2 Good and Bad Practices 7
2.3 Barriers . 9

3 A First Look 11
3.1 Setup . 11
3.2 Minimal Examples . 12

3.2.1 An Example in LATEX 12
3.2.2 An Example in Markdown 15

3.3 Quick Reporting . 17
3.4 Extracting R Code . 17

4 Editors 19
4.1 RStudio . 19
4.2 LYX . 19
4.3 Emacs/ESS . 19
4.4 Other Editors . 19

5 Document Formats 21
5.1 Input Syntax . 21

5.1.1 Chunk Options . 21
5.1.2 Chunk Label . 21
5.1.3 Global Options . 21
5.1.4 Chunk Syntax . 21

ix

x Contents

5.2 Document Formats . 21
5.2.1 Markdown . 21
5.2.2 LATEX . 21
5.2.3 HTML . 21
5.2.4 reStructuredText 21
5.2.5 Customization . 21

5.3 Output Renderers . 21
5.4 R Scripts . 21

6 Text Output 23
6.1 Inline Output . 23
6.2 Chunk Output . 23

6.2.1 Chunk Evaluation 23
6.2.2 Code Formatting 23
6.2.3 Code Decoration 23
6.2.4 Show/Hide Output 23

6.3 Tables . 23
6.4 Themes . 23

7 Graphics 25
7.1 Graphical Devices . 26

7.1.1 Custom Device . 26
7.1.2 Choose a Device 26
7.1.3 Device Size . 26
7.1.4 More Device Options 26
7.1.5 Encoding . 26
7.1.6 The Dingbats Font 26

7.2 Plot Recording . 26
7.3 Plot Rearrangement . 26

7.3.1 Animation . 26
7.3.2 Alignment . 26

7.4 Plot Size in Output . 26
7.5 Extra Output Options . 26
7.6 The tikz Device . 26
7.7 Figure Environment . 26
7.8 Figure Path . 26

8 Cache 27
8.1 Implementation . 27
8.2 Write Cache . 27
8.3 When to Update Cache 27
8.4 Side Effects . 27
8.5 Chunk Dependencies . 27

Contents xi

8.5.1 Manual Dependency 27
8.5.2 Automatic Dependency 27

9 Cross Reference 29
9.1 Chunk Reference . 29

9.1.1 Embed Code Chunks 29
9.1.2 Reuse Whole Chunks 29

9.2 Code Externalization . 29
9.2.1 Labeled Chunks . 29
9.2.2 Line-based Chunks 29

9.3 Child Documents . 29
9.3.1 Input Child Documents 29
9.3.2 Child Documents as Templates 29
9.3.3 Standalone Mode 29

10 Hooks 31
10.1 Chunk Hooks . 31

10.1.1 Create Chunk Hooks 31
10.1.2 Trigger Chunk Hooks 31
10.1.3 Hook Arguments 31
10.1.4 Hooks and Chunk Options 31
10.1.5 Write Output . 31

10.2 Examples . 31
10.2.1 Crop Plots . 31
10.2.2 rgl Plots . 31
10.2.3 Manually Save Plots 31
10.2.4 Optimize PNG Plots 31
10.2.5 Close an rgl Device 31
10.2.6 WebGL . 31

11 Language Engines 33
11.1 Design . 33

11.1.1 The Engine Function 33
11.1.2 Engine Options . 33

11.2 Languages and Tools . 33
11.2.1 C++ . 33
11.2.2 Interpreted Languages 33
11.2.3 TikZ . 33
11.2.4 Graphviz . 33
11.2.5 Highlight . 33

xii Contents

12 Tricks and Solutions 35
12.1 Chunk Options . 37

12.1.1 Option Aliases . 37
12.1.2 Option Templates 37
12.1.3 Program Chunk Options 37
12.1.4 Code in Appendix 37

12.2 Package Options . 37
12.3 Typesetting . 37

12.3.1 Output Width . 37
12.3.2 Message Colors . 37
12.3.3 Box Padding . 37
12.3.4 Beamer . 37
12.3.5 Suppress Long Output 37
12.3.6 Escape Special Characters 37
12.3.7 The Example Environment 37

12.4 Utilities . 37
12.4.1 R Package Citation 37
12.4.2 Image URI . 37
12.4.3 Upload Images . 37
12.4.4 Compile Documents 37
12.4.5 Construct Code Chunks 37
12.4.6 Extract Source Code 37
12.4.7 Reproducible Simulation 37
12.4.8 R Documentation 37
12.4.9 Rst2pdf . 37
12.4.10 Package Demos . 37
12.4.11 Pretty Printing . 37
12.4.12 A Macro Preprocessor 37

12.5 Debugging . 37
12.6 Multilingual Support . 37

13 Publishing Reports 39
13.1 RStudio . 39
13.2 Pandoc . 39
13.3 HTML5 Slides . 39
13.4 Jekyll . 39
13.5 WordPress . 39

14 Applications 41
14.1 Homework . 41
14.2 Web Site and Blogging . 41

14.2.1 Vistat and Rcpp Gallery 41
14.2.2 UCLA R Tutorial 41

Contents xiii

14.2.3 The cda and RHadoop Wiki 41
14.2.4 The ggbio Package 41
14.2.5 Geospatial Data in R and Beyond 41

14.3 Package Vignettes . 41
14.3.1 PDF Vignette . 41
14.3.2 HTML Vignette . 41

14.4 Books . 41
14.4.1 This Book . 41
14.4.2 The Analysis of Data 41
14.4.3 The Statistical Sleuth in R 41

15 Other Tools 43
15.1 Sweave . 43

15.1.1 Syntax . 43
15.1.2 Options . 43
15.1.3 Problems . 43

15.2 Other R Packages . 43
15.3 Python Packages . 43

15.3.1 Dexy . 43
15.3.2 PythonTEX . 43
15.3.3 IPython . 43

15.4 More Tools . 43
15.4.1 Org-mode . 43
15.4.2 SASweave . 43
15.4.3 Office . 43

A Internals 45
A.1 Documentation . 45
A.2 Closures . 45
A.3 Implementation . 45

A.3.1 Parser . 45
A.3.2 Chunk Hooks . 45
A.3.3 Option Aliases . 45
A.3.4 Cache . 45
A.3.5 Compatibility with Sweave 45
A.3.6 Concordance . 45

A.4 Syntax . 45

Bibliography 47

Index 49

Preface

We import a dataset into a statistical software package, run a procedure
to get all results, then copy and paste selected pieces into a typesetting
program, add a few descriptions, and finish a report. This is a common
practice of writing statistical reports. There are obvious dangers and
disadvantages in this process:

1. it is error-prone due to too much manual work;

2. it requires lots of human effort to do tedious jobs such as
copying results across documents;

3. the workflow is barely recordable especially when it involves
GUI (Graphical User Interface) operations, therefore it is dif-
ficult to reproduce;

4. a tiny change of the data source in the future will require the
author(s) to go through the same procedure again, which can
take nearly the same amount of time and effort;

5. the analysis and writing are separate, so close attention has
to be paid to the synchronization of the two parts.

In fact, a report can be generated dynamically from program code. Just
like a software package has its source code, a dynamic document is the
source code of a report. It is a combination of computer code and the
corresponding narratives. When we compile the dynamic document,
the program code in it is executed and replaced with the output; we
get a final report by mixing the code output with the narratives. Be-
cause we only manage the source code, we are free of all the possible
problems above. For example, we can change a single parameter in the
source code, and get a different report on the fly.

In this book, dynamic documents refer to the kind of source docu-
ments containing both program code and narratives. Sometimes we
may just call them source documents since “dynamic” may sound con-
fusing and ambiguous to some people (it does not mean interactivity
or animations). We also use the term report frequently throughout the
book, which really means the output document compiled from a dy-
namic document.

xv

xvi Preface

Who Should Read This Book
This book is written for both beginners and advanced users. The main
goal is to make writing reports easier: the “report” here can range from
student homework or project reports, exams, books, blogs, and web
pages to virtually any documents related to statistical graphics, com-
puting, and data analysis.

For beginners, Chapter 1 to 8 should be enough for basic applica-
tions (which have already covered many features); for power users,
Chapter 9 to 11 can be helpful for understanding the extensibility of
the knitr package.

Familiarity with LATEX and HTML can be helpful, but is not required
at all; once we get the basic idea, we can write reports in simple lan-
guages such as Markdown. Unless otherwise noted, all features apply
to all document formats, although we primarily use LATEX for examples.

We recommend the readers to take a look at the Web site RPubs
(http://rpubs.com), which contains a large number of user-contributed
documents. Hopefully they are convincing enough to show it is quick
and easy to write dynamic documents.

Software Information and Conventions
The main tools we introduce in this book are the R language (R Core
Team, 2013) and the knitr package (Xie, 2013), with which this book
was written, but the language in the documents is not restricted to R;
for example, we can also integrate Python, awk, and shell scripts, etc.,
into the reports. For document formats, we mainly use LATEX, HTML,
and Markdown.

Both R and knitr are available on CRAN (Comprehensive R Archive
Network) as free and open-source software: http://cran.r-project.
org. Their version information for this book can be found in the session
information:

print(sessionInfo(), FALSE)

R version 3.0.1 (2013-05-16)
Platform: x86_64-pc-linux-gnu (64-bit)
##
attached base packages:

http://rpubs.com
http://cran.r-project.org
http://cran.r-project.org

Preface xvii

[1] stats graphics grDevices utils datasets
[6] base
##
other attached packages:
[1] knitr_1.4.8
##
loaded via a namespace (and not attached):
[1] evaluate_0.4.7 formatR_0.9 highr_0.2.4
[4] stringr_0.6.2 tools_3.0.1

The knitr package is documented on the Web site http://yihui.
name/knitr/, and the most important page is perhaps http://yihui.
name/knitr/options, where we can find the complete reference for
chunk options (Section 5.1.1). The development version is hosted on
Github: https://github.com/yihui/knitr; you can always check out
the latest development version, file issues/feature requests, or even
participate in the development by forking the repository and making
changes by yourself. There are plenty of examples in the repository
https://github.com/yihui/knitr-examples, including both minimal
and advanced examples. There is also a wiki page maintained by Frank
Harrell et al. from the Department of Biostatistics, Vanderbilt Univer-
sity, which introduced several tricks and useful experience of using
knitr: http://biostat.mc.vanderbilt.edu.

Unlike many other books on R, we do not add prompts to R source
code in this book, and we comment out the text output by two hashes
by default, as you can see above. The reason for this convention is
explained in Chapter 6. Package names are in bold text (e.g., rpart),
function names in italic (e.g., paste()), inline code is formatted in a type-
writer font (e.g., mean(1:10, trim = 0.1)), and filenames are in sans
serif fonts (e.g., figure/foo.pdf).

Structure of the Book

Chapter 1 is an overview of dynamic documents, introducing the idea
of literate programming; Chapter 2 explains why dynamic documents
are important to scientific research from the viewpoint of reproducible
research; Chapter 3 gives a first complete example that covers basic
concepts and what we can do with knitr; Chapter 4 introduces a few
common text editors that support knitr, so that it is easier to compile

http://yihui.name/knitr/
http://yihui.name/knitr/
http://yihui.name/knitr/options
http://yihui.name/knitr/options
https://github.com/yihui/knitr
https://github.com/yihui/knitr-examples
http://biostat.mc.vanderbilt.edu

xviii Preface

reports from source documents; and Chapter 5 describes the syntax for
different document formats such as LATEX, HTML, and Markdown.

Chapter 6 to 11 explain the core functionality of the package. Chap-
ter 6 and 7 present how to control text and graphics output from knitr,
respectively; Chapter 8 talks about the caching mechanism that may
significantly reduce the computation time; Chapter 9 shows how to
reuse source code by chunk references and organize child documents;
Chapter 10 consists of an advanced topic — chunk hooks, which make
a literate programming document really programmable and extensible;
and Chapter 11 illustrates how to integrate other languages, such as
Python and awk, etc. into one report in the knitr framework.

Chapter 12 introduces some useful tricks that make it easier to write
documents with knitr; Chapter 13 shows how to publish reports in a
variety of formats including PDF, HTML, and HTML5 slides; Chap-
ter 14 covers a few significant applications; and Chapter 15 introduces
other tools for dynamic report generation, such as Sweave, other R
packages, and software in other languages. Appendix A is a guide to
some internal structures of knitr, which may be helpful to other pack-
age developers.

The topics from Chapter 6 to 11 are parallel to each other. For ex-
ample, if you want to know more about graphics output, you can skip
Chapter 6 and jump to Chapter 7 directly.

In all, we will show how to improve our efficiency in writing re-
ports, fine tune every aspect of a report, and go from program output
to publication quality reports.

Acknowledgments

First, I want to thank my wireless router, which was broken when I
started writing the core chapters of this book (in the boring winter of
Ames). Besides, I also thank my wife for not giving me the Ethernet
cable during that period.

This book would certainly not have been possible without the pow-
erful R language, for which I thank the R core team and its contribu-
tors. The seminal work of Sweave (by Friedrich Leisch and R-core) is
the most important source of inspiration of knitr. Some additional fea-
tures were inspired by other R packages including cacheSweave (Roger
Peng), pgfSweave (Cameron Bracken and Charlie Sharpsteen), weaver
(Seth Falcon), SweaveListingUtils (Peter Ruckdeschel), highlight (Ro-
main Francois), and brew (Jeffrey Horner). The initial design was based

Preface xix

on Hadley Wickham’s decumar package, and the evaluator is based on
his evaluate package. Both LYX and RStudio quickly included support
to knitr after it came out, which made it a lot easier to write source
documents, and I’d like to thank their developers (especially Jean-Marc
Lasgouttes, JJ Allaire, and Joe Cheng); similarly I thank the developers
of other editors such as Emacs/ESS.

The R/knitr user community is truly amazing. There has been a lot
of feedback since the beginning of its development in late 2011. I still
remember some users shouted it from the rooftops when I released the
first beta version. I appreciate this kind of excitement. Hundreds of
questions and comments in the mailing list (https://groups.google.
com/group/knitr) and on StackOverflow (http://stackoverflow.com/
questions/tagged/knitr) made this package far more powerful than
I imagined. The development repository is on Github, where I have
received nearly 500 issues and more than 50 pull requests (patches)
from several contributors (https://github.com/yihui/knitr/pulls),
including Ramnath Vaidyanathan, Taiyun Wei, and J.J. Allaire.

to see a full list of contributors
packageDescription("knitr", fields = "Authors@R")

I thank my PhD advisors at Iowa State University, Di Cook and
Heike Hofmann, for their open-mindedness and consistent support for
my research in this “non-classical” area of statistics.

Lastly I thank the reviewers Frank Harrell, Douglas Bates, Carl Boet-
tiger, Joshua Wiley, and Scott Kostyshak for their valuable advice on im-
proving the quality of this book (which is the first book of my career),
and I’m grateful to the editor John Kimmel, without whom I would not
have been able to publish my first book quickly.

Yihui Xie
Ames, IA

https://groups.google.com/group/knitr
https://groups.google.com/group/knitr
http://stackoverflow.com/questions/tagged/knitr
http://stackoverflow.com/questions/tagged/knitr
https://github.com/yihui/knitr/pulls

Author

Yihui Xie (http://yihui.name) is a PhD student in the Department of
Statistics, Iowa State University. His research interests include inter-
active statistical graphics and statistical computing. He is an active R
user and the author of several R packages, such as animation, formatR,
Rd2roxygen, and knitr, among which the animation package won the
2009 John M. Chambers Statistical Software Award (ASA), and the knitr
package was awarded the “Honorable Mention” prize in the “Applica-
tions of R in Business Contest 2012” thanks to Revolution Analytics.

In 2006 he founded the “Capital of Statistics” (http://cos.name),
which has grown into a large online community on statistics in China.
He initiated the first Chinese R conference in 2008 and has been orga-
nizing R conferences in China since then. During his PhD training at
the Iowa State University, he won the Vince Sposito Statistical Comput-
ing Award (2011) and the Snedecor Award (2012) in the Department of
Statistics.

xxi

http://yihui.name
http://cos.name

List of Figures

1.1 A simulation of the Brownian motion 2

3.1 The source of a minimal Rnw document 13
3.2 A minimal example in LATEX 14
3.3 The source of a minimal Rmd document 15
3.4 A minimal example in Markdown 16

xxiii

List of Tables

1.1 A subset of the mtcars dataset 4

xxv

1
Introduction

The basic idea behind dynamic documents stems from literate program-
ming, a programming paradigm conceived by Donald Knuth (Knuth,
1984). The original idea was mainly for writing software: mix the source
code and documentation together; we can either extract the source code
out (called tangle) or execute the code to get the compiled results (called
weave). A dynamic document is not entirely different from a computer
program: for a dynamic document, we need to run software packages
to compile our ideas (often implemented as source code) into numeric
or graphical output, and insert the output into our literal writings (like
documentation).

We explain the idea with a trivial example: suppose we need to
write the value of 2π into a report; of course, we can directly write
the number 6.2832. Now, if I change my mind and I want 6π instead,
I may have to find a calculator, erase the previous value, and write the
new answer. Since it is extremely easy for the computer to calculate 6π,
why not leave this job to the computer completely and free oneself from
this kind of manual work? What we need to do is to leave the source
code in the document instead of a hard-coded value, and tell the com-
puter how to find and execute the source code. Usually we use special
markers for computer code in the source report, e.g., we can write

The correct answer is {{ 6 * pi }}.

in which {{ and }} is a pair of markers that tell the computer 6 * pi is
the source code and should be executed. Note here pi (π) is a constant
in R.

If you know a web scripting language such as PHP (which can em-
bed program code into HTML documents), this idea should look fa-
miliar. The above example shows the inline code output, which means
source code is mixed inline with a sentence. The other type of output
is the chunk output, which gives the results from a whole block of code.
The chunk output has much more flexibility; for example, we can pro-
duce graphics and tables from a code chunk.

Figure 1.1 was dynamically created with a chunk of R code, which
is printed below:

1

2 Dynamic Documents with R and knitr

0 20 40 60 80 100
-8
-6
-4
-2
0
2

step

x i
+

1
=

x i
+

ε i
+

1

FIGURE 1.1
A simulation of the Brownian motion for 100 steps: x1 = ε1, xi+1 =

xi + εi+1, εi
iid∼ N(0, 1), i = 1, 2, · · · , 100

set.seed(1213) # for reproducibility of random numbers
x <- cumsum(rnorm(100))
plot(x, type = "l", ylab = "$x_{i+1}=x_i + \\epsilon_{i+1}$",

xlab = "step")

If we were to do this by hand, we would have to open R, paste the
code into the R console to draw the plot, save it as a PDF file, and in-
sert it into a LATEX document with \includegraphics{}. This is both
tedious for the author and difficult to maintain — supposing we want
to change the random seed in set.seed(), increase the number of steps,
or use a scatterplot instead of a line graph, we will have to update both
the source code and the output. In practice, the computing and analy-
sis can be far more complicated than the toy example in Figure 1.1, and
more manual work will be required accordingly.

The spirit of dynamic documents may best be described by the phi-
losophy of the ESS project (Rossini et al., 2004) for the S language:

The source code is real.

Philosophy for using ESS[S]

Since the output can be produced by the source code, we can main-
tain the source code only. However, in most cases, the direct output

Introduction 3

from the source code alone does not constitute a report that is readable
for a human. That is why we need the literate programming paradigm.
In this paradigm, an author has two tasks:

1. write program code to do computing, and

2. write narratives to explain what is being done by the pro-
gram code

The traditional approach to doing the second task is to write comments
for the code, but comments are often limited in terms of expressing the
full thoughts of the authors. Normally we write our ideas in a paper or
a report instead of hundreds of lines of code comments.

Let us change our traditional attitude to the construction
of programs: Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather
on explaining to humans what we want the computer to
do.

Donald E. Knuth
Literate Programming, 1984

Technically, literate programming involves three steps:

1. parse the source document and separate code from narratives

2. execute source code and return results

3. mix results from the source code with the original narratives

These steps can be implemented in software packages, so the authors
do not need to take care of these technical details. Instead, we only
control what the output should look like. There are many details that
we can tune for a report (especially for reports related to data analy-
sis), although the idea of literate programming seems to be simple. For
example, data reports often include tables, and Table 1.1 is a table gen-
erated from the R code below using the kable() function in knitr:

library(knitr)
kable(head(mtcars[, 1:6]))

Think how easy it is to maintain two lines of R code compared to
maintaining many lines of messy LATEX code!

4 Dynamic Documents with R and knitr

TABLE 1.1
A subset of the mtcars dataset: the first 6 rows and 6 columns.

mpg cyl disp hp drat wt
Mazda RX4 21.0 6 160 110 3.90 2.620
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875
Datsun 710 22.8 4 108 93 3.85 2.320
Hornet 4 Drive 21.4 6 258 110 3.08 3.215
Hornet Sportabout 18.7 8 360 175 3.15 3.440
Valiant 18.1 6 225 105 2.76 3.460

Generating reports dynamically by integrating computer code with
narratives is not only easier, but also closely related to reproducible re-
search, which we will discuss in the next chapter.

2
Reproducible Research

Results from scientific research have to be reproducible to be trustwor-
thy. We do not want a finding to be merely due to an isolated occur-
rence, e.g., only one specific laboratory researcher can produce the re-
sults on one specific day, and nobody else can produce the same results
under the same conditions.

Reproducible research (RR) is one possible by-product of dynamic
documents, but dynamic documents do not absolutely guarantee RR.
Because there is usually no human intervention when we generate a
report dynamically, it is likely to be reproducible since it is relatively
easy to prepare the same software and hardware environment, which
is everything we need to reproduce the results. However, the meaning
of reproducibility can be beyond reproducing one result or one report.
As a trivial example, one might have done a Monte Carlo simulation
with a certain random seed and got a good estimate of a parameter, but
the result was actually due to a “lucky” random seed. Although we
can strictly reproduce the estimate, it is not actually reproducible in the
general sense. Similar problems exist in optimization algorithms, e.g.,
different starting values can lead to different roots of the same equation.

Anyway, dynamic report generation is still an important step to-
wards RR. In this chapter, we discuss a selection of the RR literature
and practices of RR.

2.1 Literature

The term reproducible research was first proposed by Jon Claerbout at
Stanford University (Fomel and Claerbout, 2009). The idea is that the
final product of research is not only the paper itself, but also the full
computational environment used to produce the results in the paper
such as the code and data necessary for reproduction of the results and
building upon the research.

5

6 Dynamic Documents with R and knitr

Similarly, Buckheit and Donoho (1995) pointed out the essence of
the scholarship of an article as follows:

An article about computational science in a scientific pub-
lication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the com-
plete software development environment and the com-
plete set of instructions which generated the figures.

D. Donoho
WaveLab and Reproducible Research

That was well said! Fortunately, journals have been moving in that
direction as well. For example, Peng (2009) provided detailed instruc-
tions to authors on the criteria of reproducibility and how to submit
materials for reproducing the paper in the Biostatistics journal.

At the technical level, RR is often related to literate programming
(Knuth, 1984), a paradigm conceived by Donald Knuth to integrate
computer code with software documentation in one document. How-
ever, early implementations like WEB (Knuth, 1983) and Noweb (Ram-
sey, 1994) were not directly suitable for data analysis and report gener-
ation. There are other tools on this path of documentation generation,
such as roxygen2 (Wickham et al., 2013), which is an R implementation
of Doxygen (van Heesch, 2008). Sweave (Leisch, 2002) was among the
first implementations for dealing with dynamic documents in R (Ihaka
and Gentleman, 1996; R Core Team, 2013). There are still a number
of challenges that were not solved by the existing tools; for example,
Sweave is closely tied to LATEX and hard to extend. The knitr package
(Xie, 2013) was built upon the ideas of previous tools with a framework
redesign, enabling easy and fine control of many aspects of a report. We
will introduce other tools in Chapter 15.

An overview of literate programming applied to statistical analysis
can be found in Rossini (2002). Gentleman and Temple Lang (2004) in-
troduced general concepts of literate programming documents for sta-
tistical analysis, with a discussion of the software architecture. Gen-
tleman (2005) is a practical example based on Gentleman and Temple
Lang (2004), using an R package GolubRR to distribute reproducible
analysis. Baggerly et al. (2004) revealed several problems that may arise
with the standard practice of publishing data analysis results, which
can lead to false discoveries due to lack of details for reproducibility

Reproducible Research 7

(even with datasets supplied). Instead of separating results from com-
puting, we can put everything in one document (called a compendium in
Gentleman and Temple Lang (2004)), including the computer code and
narratives. When we compile this document, the computer code will
be executed, giving us the results directly.

2.2 Good and Bad Practices
The key to keep in mind for RR is that other people should be able to
reproduce our results, therefore we should try our best to make our
computation portable. We discuss some good practices for RR below
and explain why it can be bad not to follow them.

• Manage all source files under the same directory and use relative
paths whenever possible: absolute paths can break reproducibility,
e.g., a data file like C:/Users/someone/foo.csv or /home/someone/foo.csv
may only exist in one computer, and other people may not be able to
read it since the absolute path is likely to be different in their hard
disk. If we keep everything under the same directory, we can read a
data file with read.csv(’foo.csv’) (if it is under the current work-
ing directory) or read.csv(’../data/foo.csv’) (go one level up and
find the file under the data/ directory); when we disseminate the re-
sults, we can make an archive of the whole directory (e.g., as a zip
package).

• Do not change the working directory after the computing has started:
setwd() is the function in R to set the working directory, and it is not
uncommon to see setwd(’path/to/some/dir’) in user’s code, which
is bad because it is not only an absolute path, but also has a global
effect on the rest of the source document. In that case, we have to keep
in mind that all relative paths may need adjustments since the root
directory has changed, and the software may write the output in an
unexpected place (e.g., the figures are expected to be generated in the
./figures/ directory, but are actually written to ./data/figures/ instead
if we setwd(’./data/’)). If we have to set the working directory at
all, do it in the very beginning of an R session; most of the editors to
be introduced in Chapter 4 follow this rule, and the working directory
is set to the directory of the source document before knitr is called to
compile documents.

• Compile the documents in a clean R session: existing R objects in the

8 Dynamic Documents with R and knitr

current R session may “contaminate” the results in the output. It is
fine if we write a report by accumulating code chunks one by one
and running them interactively to check the results, but in the end we
should compile a report in the batch mode with a new R session so all
the results are freshly generated from the code.

• Avoid the commands that require human interaction: human input
can be highly unpredictable, e.g., we do not know for sure which
file the user will choose if we pop up a dialog box asking the user
to choose a data file. Instead of using functions like file.choose() to in-
put a file to read.table(), we should write the filename explicitly, e.g.,
read.table(’a-specific-file.txt’).

• Avoid environment variables for data analysis: while environment
variables are often heavily used in programming for configuration
purposes, it is ill-advised to use them in data analysis because they
require additional instructions for users to set up, and humans can
simply forget to do this. If there are any options to set up, do it inside
the source document.

• Attach sessionInfo() and instructions on how to compile this docu-
ment: the session information makes a reader aware of the software
environment, such as the version of R, the operating system and add-
on packages used. Sometimes it is not as simple as calling one single
function to compile a document, and we have to make it clear how to
compile it if additional steps are required; but it is better to provide
the instructions in the form of a computer script, e.g., a shell script, a
Makefile, or a batch file.

These practices are not necessarily restricted to the R language, although
we used R for examples. The same rules also apply to other computing
environments.

Note that literate programming tools often require users to compile
the documents in batch mode, and it is good for reproducible research,
but the batch mode can be cumbersome for exploratory data analy-
sis. When we have not decided what to put in the final document, we
may need to interact with the data and code frequently, and it is not
worth compiling the whole document each time we update the code.
This problem can be solved by a capable editor such as RStudio and
Emacs/ESS, which are introduced in Chapter 4. In these editors, we can
interact with the code and explore the data freely (e.g., send or write R
code in an associated R session), and once we finish the coding work,
we can compile the whole document in the batch mode to make sure
all the code works in a clean R session.

Reproducible Research 9

2.3 Barriers
Despite all the advantages of RR, there are some practical barriers, and
here is a non-exhaustive list:

• the data can be huge: for example, it is common that high energy
physics and next-generation sequencing data in biology can produce
tens of terabytes of data, and it is not trivial to archive the data with
the reports and distribute them

• confidentiality of data: it may be prohibited to release the raw data
with the report, especially when it is involved with human subjects
due to the confidentiality issues

• software version and configuration: a report may be generated with
an old version of a software package that is no longer available, or
with a software package that compiles differently on different operat-
ing systems

• competition: one may choose not release the code or data with the
report due to the fact that potential competitors can easily get ev-
erything for free, whereas the original authors have invested a large
amount of money and effort

We certainly should not expect all reports in the world to be publicly
available and strictly reproducible, but it is better to share even mediocre
or flawed code or problematic datasets than not to share anything at all.
Instead of persuading people into RR by policies, we may try to create
tools that make RR easier than cut-and-paste, and knitr is such an at-
tempt. The success of RPubs (http://rpubs.com) is evidence that an
easy tool can quickly promote RR, because users enjoy using it. Read-
ers can find hundreds of reports contributed by users in the above Web
site. It is fairly common to see student homework and exercises there,
and once the students are trained in this manner, we may expect more
reproducible scientific research in the future.

http://rpubs.com

3
A First Look

The knitr package is a general-purpose literate programming engine —
it supports document formats including LATEX, HTML, and Markdown
(see Chapter 5), and programming languages such as R, Python, awk,
C++, and shell scripts (Chapter 11). Before we get started, we need to
install knitr in R. Then we will introduce the basic concepts with min-
imal examples. Finally, we will show how to generate reports quickly
from pure R scripts, which can be useful for beginners who do not know
anything about dynamic documents.

3.1 Setup
Since knitr is an R package, it can be installed from CRAN in the usual
way in R:

install.packages("knitr", dependencies = TRUE)

Note here that dependencies = TRUE is optional, and will install all
packages that are not absolutely necessary but can enhance this pack-
age with some useful features. The development version is hosted on
Github: https://github.com/yihui/knitr, and you can always check
out the latest development version, which may not be stable but con-
tains the latest bug fixes and new features. If you have any problems
with knitr, the first thing to check is its version:

packageVersion("knitr")
if not the latest version, run
update.packages()

If you choose LATEX as the typesetting tool, you may need to install
MiKTEX (Windows, http://miktex.org/), MacTEX (Mac OS, http://
tug.org/mactex/) or TEXLive (Linux, http://tug.org/texlive/). If

11

https://github.com/yihui/knitr
http://miktex.org/
http://tug.org/mactex/
http://tug.org/mactex/
http://tug.org/texlive/

12 Dynamic Documents with R and knitr

you are going to work with HTML or Markdown, nothing else needs
to be installed, since the output will be Web pages, which you can view
with a Web browser.

Once we have knitr installed, we can compile source documents
using the function knit(), e.g.,

library(knitr)
knit("your-file.Rnw")

A *.Rnw file is usually a LATEX document with R code embedded in
it, as we will see in the following section and Chapter 5, in which more
types of documents will be introduced.

3.2 Minimal Examples
We use two minimal examples written in LATEX and Markdown, respec-
tively, to illustrate the structure of dynamic documents. We do not dis-
cuss the syntax of LATEX or Markdown for the time being (see Chapter 5
instead). For the sake of simplicity, the cars dataset in base R is used to
build a simple linear regression model. Type ?cars in R to see detailed
documentation. Basically it has two variables, speed and distance:

str(cars)

'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

3.2.1 An Example in LATEX

Figure 3.1 is a full example of R code embedded in LATEX; we call this
kind of documents Rnw documents hereafter because their filename ex-
tension is Rnw by convention. If we save it as a file minimal.Rnw and
run knit(’minimal.Rnw’) in R as described before, knitr will generate
a LATEX output document named minimal.tex. For those who are familiar
with LATEX, you can compile this document to PDF via pdflatex. Figure
3.2 is the PDF document compiled from the Rnw document.

What is essential here is how we embedded R code in LATEX. In an
Rnw document, <�<>�>= marks the beginning of code chunks, and @ ter-
minates a code chunk (this description is not rigorous but is often easier

A First Look 13

\documentclass{article}
\begin{document}
\title{A Minimal Example}
\author{Yihui Xie}
\maketitle

We examine the relationship between speed and stopping
distance using a linear regression model:
$Y = \beta_0 + \beta_1 x + \epsilon$.

<<model, fig.width=4, fig.height=3, fig.align='center'>>=
par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)
plot(cars, pch = 20, col = 'darkgray')
fit <- lm(dist ~ speed, data = cars)
abline(fit, lwd = 2)
@

The slope of a simple linear regression is
\Sexpr{coef(fit)[2]}.
\end{document}

FIGURE 3.1
The source of a minimal Rnw document: see output in Figure 3.2.

to understand); we have four lines of R code between the two mark-
ers in this example to draw a scatterplot, fit a linear model, and add
a regression line to the scatterplot. The command \Sexpr{} is used to
embed inline R code, e.g., coef(fit)[2] in this example. We can write
chunk options for a code chunk between <�< and >�>=; the chunk options
in this example specified the plot size to be 4 by 3 inches (fig.width and
fig.height), and plots should be aligned in the center (fig.align).

In this minimal example, we have most basic elements of a report:

1. title, author, and date

2. model description

3. data and computation

4. graphics

5. numeric results

All the output is generated dynamically from R. Even if the data has

14 Dynamic Documents with R and knitr

A Minimal Example

Yihui Xie

September 5, 2013

We examine the relationship between speed and stopping distance using a
linear regression model: Y = β0 + β1x+ ε.

par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)

plot(cars, pch = 20, col = "darkgray")

fit <- lm(dist ~ speed, data = cars)

abline(fit, lwd = 2)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0

speed

di
st

The slope of a simple linear regression is 3.9324.

1

FIGURE 3.2
A minimal example in LATEX with an R code chunk, a plot, and numeric
output (regression coefficient).

A First Look 15

A Minimal Example

We examine the relationship between speed and stopping
distance using a linear regression model:
$Y = \beta_0 + \beta_1 x + \epsilon$.

```{r model, fig.width=4, fig.height=3, fig.align='center'}
par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)
plot(cars, pch = 20, col = 'darkgray')
fit <- lm(dist ~ speed, data = cars)
abline(fit, lwd = 2)
```

The slope of a simple linear regression is `r coef(fit)[2]`.

FIGURE 3.3
The source of a minimal Rmd document: see output in Figure 3.4.

changed, we do not need to redo the report from the ground up, and the
output will be updated accordingly if we update the data and recompile
the report.

3.2.2 An Example in Markdown

LATEX may look overwhelming to beginners due to the large number
of commands. By comparison, Markdown (Gruber, 2004) is a much
simpler format. Figure 3.3 is a Markdown example doing the same
analysis with the previous example:

The ideal output from Markdown is an HTML Web page, as shown
in Figure 3.4 (in Mozilla Firefox). Similarly, we can see the syntax for
R code in a Markdown document: ```{r} opens a code chunk, ```
terminates a chunk, and inline R code can be put inside `r `, where `
is a backtick.

A slightly longer example in knitr is a demo named notebook, which
is based on Markdown. It shows not only the potential power of Mark-
down, but also the possibility of building Web applications with knitr.
To watch the demo, run the code below:

if (!require("shiny")) install.packages("shiny")
demo("notebook", package = "knitr")

16 Dynamic Documents with R and knitr

FIGURE 3.4
A minimal example in Markdown with the same analysis as in Figure
3.2, but the output is HTML instead of PDF now.

A First Look 17

Your default Web browser will be launched to show a Web note-
book. The source code is in the left panel, and the live results are in
the right panel. You are free to experiment with the source code and
re-compile the notebook.

3.3 Quick Reporting
If a user only has basic knowledge of R but knows nothing about knitr,
or one does not want to write anything other than an R script, it is also
possible to generate a quick report from this R script using the stitch()
function.

The basic idea of stitch() is that knitr provides a template of the
source document with some default settings, so that the user only needs
to feed this template with an R script (as one code chunk); then knitr
will compile the template to a report. Currently it has built-in templates
for LATEX, HTML, and Markdown. The usage is like this:

library(knitr)
stitch("your-script.R")

3.4 Extracting R Code
For a literate programming document, we can either compile it to a re-
port (run the code), or extract the program code in it. They are called
“weaving” and “tangling,” respectively. Apparently the function knit()
is for weaving, and the corresponding tangling function is purl() in
knitr. For example,

library(knitr)
purl("your-file.Rnw")
purl("your-file.Rmd")

The result of tangling is an R script; in the above examples, the de-
fault output will be your-file.R, which consists of all code chunks in the
source document.

So far we have been introducing the command line usage of knitr,

18 Dynamic Documents with R and knitr

and it is often tedious to type the commands repeatedly. In the next
chapter, we show how a decent editor can help edit and compile the
source document with one single mouse click or a keyboard shortcut.

4
Editors

4.1 RStudio

4.2 LYX

4.3 Emacs/ESS

4.4 Other Editors

19

5
Document Formats

5.1 Input Syntax

5.1.1 Chunk Options

5.1.2 Chunk Label

5.1.3 Global Options

5.1.4 Chunk Syntax

5.2 Document Formats

5.2.1 Markdown

5.2.2 LATEX

5.2.3 HTML

5.2.4 reStructuredText

5.2.5 Customization

5.3 Output Renderers

5.4 R Scripts

21

6
Text Output

6.1 Inline Output

6.2 Chunk Output

6.2.1 Chunk Evaluation

6.2.2 Code Formatting

6.2.3 Code Decoration

6.2.4 Show/Hide Output

6.3 Tables

6.4 Themes

23

7
Graphics

25

26 Dynamic Documents with R and knitr

7.1 Graphical Devices

7.1.1 Custom Device

7.1.2 Choose a Device

7.1.3 Device Size

7.1.4 More Device Options

7.1.5 Encoding

7.1.6 The Dingbats Font

7.2 Plot Recording

7.3 Plot Rearrangement

7.3.1 Animation

7.3.2 Alignment

7.4 Plot Size in Output

7.5 Extra Output Options

7.6 The tikz Device

7.7 Figure Environment

7.8 Figure Path

8
Cache

8.1 Implementation

8.2 Write Cache

8.3 When to Update Cache

8.4 Side Effects

8.5 Chunk Dependencies

8.5.1 Manual Dependency

8.5.2 Automatic Dependency

27

9
Cross Reference

9.1 Chunk Reference

9.1.1 Embed Code Chunks

9.1.2 Reuse Whole Chunks

9.2 Code Externalization

9.2.1 Labeled Chunks

9.2.2 Line-based Chunks

9.3 Child Documents

9.3.1 Input Child Documents

9.3.2 Child Documents as Templates

9.3.3 Standalone Mode

29

10
Hooks

10.1 Chunk Hooks

10.1.1 Create Chunk Hooks

10.1.2 Trigger Chunk Hooks

10.1.3 Hook Arguments

10.1.4 Hooks and Chunk Options

10.1.5 Write Output

10.2 Examples

10.2.1 Crop Plots

10.2.2 rgl Plots

10.2.3 Manually Save Plots

10.2.4 Optimize PNG Plots

10.2.5 Close an rgl Device

10.2.6 WebGL

31

11
Language Engines

11.1 Design

11.1.1 The Engine Function

11.1.2 Engine Options

11.2 Languages and Tools

11.2.1 C++

11.2.2 Interpreted Languages

11.2.3 TikZ

11.2.4 Graphviz

11.2.5 Highlight

33

12
Tricks and Solutions

35

36 Dynamic Documents with R and knitr

Tricks and Solutions 37

12.1 Chunk Options

12.1.1 Option Aliases

12.1.2 Option Templates

12.1.3 Program Chunk Options

12.1.4 Code in Appendix

12.2 Package Options

12.3 Typesetting

12.3.1 Output Width

12.3.2 Message Colors

12.3.3 Box Padding

12.3.4 Beamer

12.3.5 Suppress Long Output

12.3.6 Escape Special Characters

12.3.7 The Example Environment

12.4 Utilities

12.4.1 R Package Citation

12.4.2 Image URI

12.4.3 Upload Images

12.4.4 Compile Documents

12.4.5 Construct Code Chunks

12.4.6 Extract Source Code

12.4.7 Reproducible Simulation

12.4.8 R Documentation

12.4.9 Rst2pdf

12.4.10 Package Demos

12.4.11 Pretty Printing

12.4.12 A Macro Preprocessor

12.5 Debugging

12.6 Multilingual Support

13
Publishing Reports

13.1 RStudio

13.2 Pandoc

13.3 HTML5 Slides

13.4 Jekyll

13.5 WordPress

39

14
Applications

14.1 Homework

14.2 Web Site and Blogging

14.2.1 Vistat and Rcpp Gallery

14.2.2 UCLA R Tutorial

14.2.3 The cda and RHadoop Wiki

14.2.4 The ggbio Package

14.2.5 Geospatial Data in R and Beyond

14.3 Package Vignettes

14.3.1 PDF Vignette

14.3.2 HTML Vignette

14.4 Books

14.4.1 This Book

14.4.2 The Analysis of Data

14.4.3 The Statistical Sleuth in R

41

15
Other Tools

15.1 Sweave

15.1.1 Syntax

15.1.2 Options

15.1.3 Problems

15.2 Other R Packages

15.3 Python Packages

15.3.1 Dexy

15.3.2 PythonTEX

15.3.3 IPython

15.4 More Tools

15.4.1 Org-mode

15.4.2 SASweave

15.4.3 Office

43

A
Internals

A.1 Documentation

A.2 Closures

A.3 Implementation

A.3.1 Parser

A.3.2 Chunk Hooks

A.3.3 Option Aliases

A.3.4 Cache

A.3.5 Compatibility with Sweave

A.3.6 Concordance

A.4 Syntax

45

Bibliography

Baggerly, K. A., Morris, J. S., and Coombes, K. R. (2004). Reproducibil-
ity of seldi-tof protein patterns in serum: comparing datasets from
different experiments. Bioinformatics, 20(5):777–785.

Buckheit, J. and Donoho, D. (1995). Wavelab and reproducible research.
Wavelets and statistics, 103:55.

Fomel, S. and Claerbout, J. (2009). Guest editors’ introduction: Repro-
ducible research. Computing in Science & Engineering, 11(1):5–7.

Gentleman, R. (2005). Reproducible research: A bioinformatics case
study. Statistical Applications in Genetics and Molecular Biology,
4(1):1034.

Gentleman, R. and Temple Lang, D. (2004). Statistical analyses and
reproducible research. Bioconductor Project Working Papers. URL:
http://biostats.bepress.com/bioconductor/paper2.

Gruber, J. (2004). The Markdown Project. URL: http://daringfireball.
net/projects/markdown/.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of computational and graphical statistics, 5(3):299–314.

Knuth, D. E. (1983). The WEB system of structured documentation.
Technical report, Department of Computer Science, Stanford Univer-
sity.

Knuth, D. E. (1984). Literate programming. The Computer Journal,
27(2):97–111.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports us-
ing literate data analysis. In COMPSTAT 2002 Proceedings in Com-
putational Statistics, number 69, pages 575–580. Heidelberg: Physica
Verlag.

Peng, R. (2009). Reproducible research and biostatistics. Biostatistics,
10(3):405–408.

47

http://biostats.bepress.com/bioconductor/paper2
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

48 Bibliography

R Core Team (2013). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Ramsey, N. (1994). Literate programming simplified. Software, IEEE,
11(5):97–105.

Rossini, A. (2002). Literate statistical analysis. In Proceedings of the 2nd
International Workshop on Distributed Statistical Computing, pages 15–
17, Vienna, Austria.

Rossini, A., Heiberger, R., Sparapani, R., Maechler, M., and Hornik, K.
(2004). Emacs speaks statistics: A multiplatform, multipackage de-
velopment environment for statistical analysis. Journal of Computa-
tional and Graphical Statistics, 13(1):247–261.

van Heesch, D. (2008). Doxygen: Source code documentation generator
tool. URL: http://www.doxygen.org/.

Wickham, H., Danenberg, P., and Eugster, M. (2013). roxygen2: In-source
documentation for R. R package version 2.2.2.

Xie, Y. (2013). knitr: A general-purpose package for dynamic report genera-
tion in R. R package version 1.4.7.

http://www.doxygen.org/

Index

chunk options, 13
code chunks, 12

ESS, 2

Github, 11

HTML, 15

inline R code, 13

knit(), 12

LATEX, 12
literate programming, 1

Markdown, 15

notebook, 15
Noweb, 6

purl(), 17

random seed, 5
reproducible research, 5
Rnw document, 12
RPubs, 9

stitch(), 17
Sweave, 6

tangle, 1, 17

weave, 1, 17
WEB, 6

49

	Preface
	Author
	List of Figures
	List of Tables
	1 Introduction
	2 Reproducible Research
	2.1 Literature
	2.2 Good and Bad Practices
	2.3 Barriers

	3 A First Look
	3.1 Setup
	3.2 Minimal Examples
	3.2.1 An Example in LaTeX
	3.2.2 An Example in Markdown

	3.3 Quick Reporting
	3.4 Extracting R Code

	4 Editors
	4.1 RStudio
	4.2 LyX
	4.3 Emacs/ESS
	4.4 Other Editors

	5 Document Formats
	5.1 Input Syntax
	5.1.1 Chunk Options
	5.1.2 Chunk Label
	5.1.3 Global Options
	5.1.4 Chunk Syntax

	5.2 Document Formats
	5.2.1 Markdown
	5.2.2 LaTeX
	5.2.3 HTML
	5.2.4 reStructuredText
	5.2.5 Customization

	5.3 Output Renderers
	5.4 R Scripts

	6 Text Output
	6.1 Inline Output
	6.2 Chunk Output
	6.2.1 Chunk Evaluation
	6.2.2 Code Formatting
	6.2.3 Code Decoration
	6.2.4 Show/Hide Output

	6.3 Tables
	6.4 Themes

	7 Graphics
	7.1 Graphical Devices
	7.1.1 Custom Device
	7.1.2 Choose a Device
	7.1.3 Device Size
	7.1.4 More Device Options
	7.1.5 Encoding
	7.1.6 The Dingbats Font

	7.2 Plot Recording
	7.3 Plot Rearrangement
	7.3.1 Animation
	7.3.2 Alignment

	7.4 Plot Size in Output
	7.5 Extra Output Options
	7.6 The tikz Device
	7.7 Figure Environment
	7.8 Figure Path

	8 Cache
	8.1 Implementation
	8.2 Write Cache
	8.3 When to Update Cache
	8.4 Side Effects
	8.5 Chunk Dependencies
	8.5.1 Manual Dependency
	8.5.2 Automatic Dependency

	9 Cross Reference
	9.1 Chunk Reference
	9.1.1 Embed Code Chunks
	9.1.2 Reuse Whole Chunks

	9.2 Code Externalization
	9.2.1 Labeled Chunks
	9.2.2 Line-based Chunks

	9.3 Child Documents
	9.3.1 Input Child Documents
	9.3.2 Child Documents as Templates
	9.3.3 Standalone Mode

	10 Hooks
	10.1 Chunk Hooks
	10.1.1 Create Chunk Hooks
	10.1.2 Trigger Chunk Hooks
	10.1.3 Hook Arguments
	10.1.4 Hooks and Chunk Options
	10.1.5 Write Output

	10.2 Examples
	10.2.1 Crop Plots
	10.2.2 rgl Plots
	10.2.3 Manually Save Plots
	10.2.4 Optimize PNG Plots
	10.2.5 Close an rgl Device
	10.2.6 WebGL

	11 Language Engines
	11.1 Design
	11.1.1 The Engine Function
	11.1.2 Engine Options

	11.2 Languages and Tools
	11.2.1 C++
	11.2.2 Interpreted Languages
	11.2.3 TikZ
	11.2.4 Graphviz
	11.2.5 Highlight

	12 Tricks and Solutions
	12.1 Chunk Options
	12.1.1 Option Aliases
	12.1.2 Option Templates
	12.1.3 Program Chunk Options
	12.1.4 Code in Appendix

	12.2 Package Options
	12.3 Typesetting
	12.3.1 Output Width
	12.3.2 Message Colors
	12.3.3 Box Padding
	12.3.4 Beamer
	12.3.5 Suppress Long Output
	12.3.6 Escape Special Characters
	12.3.7 The Example Environment

	12.4 Utilities
	12.4.1 R Package Citation
	12.4.2 Image URI
	12.4.3 Upload Images
	12.4.4 Compile Documents
	12.4.5 Construct Code Chunks
	12.4.6 Extract Source Code
	12.4.7 Reproducible Simulation
	12.4.8 R Documentation
	12.4.9 Rst2pdf
	12.4.10 Package Demos
	12.4.11 Pretty Printing
	12.4.12 A Macro Preprocessor

	12.5 Debugging
	12.6 Multilingual Support

	13 Publishing Reports
	13.1 RStudio
	13.2 Pandoc
	13.3 HTML5 Slides
	13.4 Jekyll
	13.5 WordPress

	14 Applications
	14.1 Homework
	14.2 Web Site and Blogging
	14.2.1 Vistat and Rcpp Gallery
	14.2.2 UCLA R Tutorial
	14.2.3 The cda and RHadoop Wiki
	14.2.4 The ggbio Package
	14.2.5 Geospatial Data in R and Beyond

	14.3 Package Vignettes
	14.3.1 PDF Vignette
	14.3.2 HTML Vignette

	14.4 Books
	14.4.1 This Book
	14.4.2 The Analysis of Data
	14.4.3 The Statistical Sleuth in R

	15 Other Tools
	15.1 Sweave
	15.1.1 Syntax
	15.1.2 Options
	15.1.3 Problems

	15.2 Other R Packages
	15.3 Python Packages
	15.3.1 Dexy
	15.3.2 PythonTeX
	15.3.3 IPython

	15.4 More Tools
	15.4.1 Org-mode
	15.4.2 SASweave
	15.4.3 Office

	A Internals
	A.1 Documentation
	A.2 Closures
	A.3 Implementation
	A.3.1 Parser
	A.3.2 Chunk Hooks
	A.3.3 Option Aliases
	A.3.4 Cache
	A.3.5 Compatibility with Sweave
	A.3.6 Concordance

	A.4 Syntax

	Bibliography
	Index

