The PracIgX Journal, 2012, No.2
Article revision 2012/10/15

Some misunderstood or unknown I&XTEX2¢
tricks (VI)

Luca Merciadri

Email Luca.Merciadri@student.ulg.ac.be
Website http://www.student.montefiore.ulg.ac.be/~merciadri/

Abstract Customizing a document class is important in the I4TEX world. We will
here see two examples of this through the lettre document class. Next,
we will consider a small fraction of a bigger IXTEX problem: the encoding
facts.

1 Introduction

Customizing a document class is important in the IXTgX world. We will here see
two examples of this through the lettre document class:

2. Removing line bending,

3. Making the space smaller, between address, etc., and the beginning of the
text.

Next, we will consider a small fraction of a bigger IXIEX problem: the encoding
facts.

2 Customization of a document class: example with
lettre

IATEX document classes can be customized: macros can be (re)defined and lengths
can be set, for example. This allows you to adapt an existing document class to
your own use. That might come in handy when you have a document class that
suits most of your document’s needs, but for which you would like to change
some specific aspects.

mailto:Luca.Merciadri@student.ulg.ac.be?subject=Re:%20PracTeX%20Journal%20article%20
http://www.student.montefiore.ulg.ac.be/~merciadri/

We will here take the example of the lettre document class to illustrate how
these two things can be done.

2.1 Removing line bending

The lettre documentclass draws a small line bending to help you bending the
letter in three parts once you have printed it. If you find this line bending disgra-
cious, here are two methods to remove it [8]:

1. Defining a macro. Put

\makeatletter
\newcommand*{\NoRule}{\renewcommand*{\rule@length}{0}}
\makeatother

in the preamble. You can then use \NoRule after the beginning of the letter
environment;

2. Creating a new class. You can also define a new class, xletter.cls, for exam-
ple, defined like this:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{xlettre}

\newcommand*{\xlettre@do}{}
\newcommand*{\xlettre@rule}{}
\newcommand*{\xlettre@norule}{’
\let \xlettre@institut=\institut
\def \institut ##1{}
\xlettre@institut{##13}Y%
\def \rule@length {0}V
/A
\def \@institut {%
\makeatletter \input{default.ins}\makeatother
\def \rule@length {0}/
jy/A

\DeclareOption{rule}{\let \xlettre@do =\xlettre@rule}
\DeclareOption{norule}{\let \xlettre@do =\xlettre@norule}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{lettrel}}

\ExecuteOptions{norule}
\ProcessOptions

\LoadClass{lettre}

\xlettre@do

\endinput

You can then use either
\documentclass[norule]{xlettre}
or

\documentclass{xlettre}

or

\documentclass[rule]{xlettre}

2.2 Making the space smaller, between address, etc., and the
beginning of the text

If you use the lettre class, you might dislike the space between address and the
beginning of the text of the letter. To make this space a lot smaller, that is, to set
the length of openingspace, simply use

\setlength\openingspace{-1cm}

in the preamble. Thanks to Gonzalo Medina Arellano for this [5].

3

3 Encoding problems

If you are collaborating with other persons using different OSes, or simply migrat-
ing from one platform to another, you may have troubles with accents and special
characters, especially if the language is French, Polish, or another language which
makes an extensive use of special characters.

Some persons sometimes mix up the words which are related to encoding. We
shall give here a brief summary of how you need to deal with encoding and IXTEX.
Thanks for both Robin Fairbairns’, Philipp Lehman’s, Giinter Milde’s, Philipp
Stephani’s and Dominik WafSenhoven'’s contributions from which I inspired a lot
at [2].

3.1 The inputenc package: the encoding of the document
You might have heard that putting
\usepackage [encoding] {inputenc}

in the preamble of every document you write should avoid encoding problems,
assuming encoding is the encoding of the related .tex file. This is partially true,
as it will solve most encoding problems, but not all.

3.1.1 Description

According to [7], the inputenc package maps certain characters to their corre-
sponding TEX macros according to the encoding option you select.

3.1.2 Encoding choice

Consider the encoding parameter. If you choose to use utf8x, it will use the
extended UTF-8 character set, and you will be able to type, among other lan-
guages, Greek. Although there are popularity differences, text encoding is nowa-
days unrelated to the operating system since all modern operating system com-
ponents (windowing systems, font systems, drawing engines, ...) are Unicode-
based or at least Unicode-capable. [2] For the rest of this text, remember that
UTEF-8 is an encoding for Unicode.

The utf8 encoding covers the code ranges for which there is a defined I&TEX
encoding, while utf8x covers code ranges for which there is a usable font. [2] You
might then think that ut£8x is the best solution, but it has many disadvantages.

Amongst them, a first problem is that the UTF-8 decoder of utf8x is more
intrusive than the one of utf8. utf8 has an expandable scanner, when the one in
utf8x is non-expandable. There is more potential for conflicts with other pack-
ages in the latter case. [2]

A second problem is that utf8x uses the ucs package, which is no longer
maintained, and which breaks important packages such as csquotes. [2]

3.1.3 Solutions?

You are definitely not lost, because there are also inputenx (a drop-in replacement
of inputenc) and luainputenc (for 8-bit encoding on LuaTgX). For comparison,
XeTgX and LuaTgX are natively in UTF-8 mode (and never require inputenc).
[2] If you use pdfIEX and want basic UTF-8 support (e.g., for accented Latin
characters), load utf8enc.def.

But, generally, utf8 lets you, for example, type Arabic script, Cyrillic script,
Czech, French, German, (not Greek, use utf8x for example), Italian, Polish, Span-
ish, etc.

3.1.4 Platforms

On Microsoft Windows ©, users tend to use either ISO-8859-1 (which is com-
monly referred to as Latin-1), or CP1252. The former is generally intended
for “Western European” languages. In this case, you need to replace encoding
by latinl. The latter is an eight-bit character encoding designed to cover lan-
guages that use the Cyrillic alphabet such as Russian, Bulgarian, Serbian Cyrillic
and other languages (French, ...), which do not use the Cyrillic alphabet. It is
the most widely used for encoding the Bulgarian, Serbian and Macedonian lan-
guages, for example.

The character set CP1252 uses some of those positions for printable characters.
Thus, the CP1252 character set is not identical with ISO-8859-1, because CP1252
contains more symbols than ISO-8859-1. [3] This is why using latinl as an option
of inputenc under Microsoft Windows © pose no problem.

If you want to stick with inputenc, you might also use ansinew for inputenc.
Sticking with latinl should not pose any problem until you type in alphabets
that 1latinl does not understand, such as Cyrillic. In ISO-8859-1, code positions
128 — 159 are explicitly reserved for control purposes; they “correspond to bit
combinations that do not represent graphic characters.”

That being said, as Unicode is state of the art, it is disadviced to continue using
either CP1252 or ISO-8859-1. It is suggested to use Unicode whenever possible.
Moreover, since UTF-8 is supported in a better way by the inputenc package
(and thus by pdfTeX-based LaTeX documents) than other encodings, it is the only
choice that can be recommended. As a preliminary conclusion, you would then
better use utf8 as encoding value for inputenc.

If you are switching to ut£8 because you are sharing IXTEX sources with others
and want to avoid problems with Latin1/15 vs. CP1252 vs. MacRoman (or similar
for Eastern European encodings), using inputenc with utf8 will work fine. This
is, once again, another reason to use ut£8.

If you need “real” Unicode support (e.g., when mixing scripts), you would
better use a Unicode-savvy engine. More specifically, XeTgX and LuaTgX are the
best options if you want UTF-8. As a conclusion, if you stick with normal &TEX
use, simply invoke utf8 unless you really need utf8x, whatever your platform.
(2, 3]

3.2 The proper encoding of the document file

To avoid clashes, the best thing is to keep your document in the same encoding
as the encoding encoding, which is the option of inputenc. This is what we
mentioned in the previous section. But, now, we will investigate the different
ways to type texts in I&IEX.

3.2.1 Directly writing characters without commands

“" 27
e

Directly writing characters without their associated commands (for example
written with a e and an acute accent) poses no problem until there is no encoding
clash. If encoding for inputenc matches the document encoding, and that the
current architecture understands this encoding, there will thus be no problem.

(2]

But if you need to share sources without modifying the encoding, using com-
mands at the place of direct keystrokes is better. But keep in mind that it makes
the code more unreadable, and that this is also very unnatural to type such char-
acters like this. [2]

Consider for example a text written under Microsoft Windows ©. Reading
it on a Linux UTF-8 workstation, and saving it as UTF-8, will result in many
encoding clashes, with exotic symbols.

There are actually four kinds of persons:

1. Those who stick with commands. Commands will always be valid, and, if
deprecated one day, using renewcommand or other structures will make no
problem. Less readable, but more portable, [2]

2. Those who use commands only when necessary. These are persons who try to
see which character from their keyboard is directly rendered, which one is
not, and, for those which are rendered, they typeset them directly, and, for
those which are not rendered (as now), they use commands. This is some-
times tedious, difficult, error-prone, but it appears natural to assume that
a character that is keyed in generates appropriate output unless it belongs
to a special category (like \ or %): documents are easy to typeset, read, and
edit for users with a similar keyboard, [2]

3. Those who use various tricks to make IATEX behaves as they want, even if they
want things that are contrary to the state-of-the-art. This might not be the best
solution, but it depends on what the tricks are, [2]

4. Those who use Unicode whenever possible. While sometimes difficult to input
(a good text editor will help), this results in readable sources that will work
across OS boundaries. [2]

The best thing which can be recommended is evidently to stick with com-
mands, such as demonstrated before. There are lots of sources to find symbols.
A well-known one is [6]. One sometimes needs to include packages for other
symbols, though.

3.2.2 Converting a file to the good encoding

If, say, you are dealing with documents in another encoding, the best thing is to
use the following procedure, assuming you are working with Linux (or with such
a virtual machine):

1. Find their current encoding,

2. Know what their future encoding will be (generally, you would better choose
UTEF-8 for aforementioned reasons),

3. Be sure that the encodings are compatible (i.e. the target character set is a
superset of the source character set). If this is not the case, you will loose
information,

4. Execute, a sample file being
fileinoldencoding.tex, and the same file, in its new encoding being

fileinnewencoding.tex:

iconv -f oldencoding
fileinoldencoding.tex -o
fileinnewencoding.tex

where oldencoding could be, for example,
windows-1252. You might make this process automatic, e.g. by creating a
shell file (here it is bash):

#/bin/bash

for i in *.tex

iconv -f windows-1252 -t utf-8 -- "$i"
> "$i.utf8" && mv -- "$i.utf8" "$i"
done

and executing this file in a folder containing .tex files. You can evidently
modify this script or the aforementioned commands as you want, to use
another encoding. By default, the encoding is ut£8 if this is your current
locale, but if you want encoding newencoding, use

-t newencoding

5. Open the file in an editor, the editor being set to open files in the output
encoding,

6. If you see strange characters, there is a problem, and check the procedure.
If everything seems normal, you can modify the file, save the modifications,
but everything under the new encoding,

7. Compile the file(s) with the good inputenc declaration, as explained above.

Note that other tools perform such operations, such as recode. [2]

3.3 Dealing with BiB files

Everything from this section comes from Philipp Lehman, Philipp Stephani, either from
[2] or from [4].

If you are using BiBTEX, you might also have problems. The first problem
is that BiBTEX cannot handle UTF-8 and non-fixed-width encodings in general.
This is probably one of the most common misunderstanding when it comes to
BibTEX. There is no way around this restriction. BibTgX cannot deal with multi-
byte encodings.

You might have already heard about bibtex8, a drop-in BiBTEX replacement
which supports 8-bit input. While it cannot handle UTF-8 either, it can sort 8-
bit input in a way that is actually useful in languages other than English, when
supplied with a suitable csf file.

Once again, you will need to use ASCII notation. Traditional BiBTEX can only
alphabetize ASCII characters correctly. If the bibliographic data includes non-
ASCII characters, they have to be given in ASCII notation. For example, instead
of typing a letter like ‘d” directly, you need to input it as \"a, using an accent
command and the ASCII letter. This ASCII notation needs to be wrapped in a
pair of curly braces. Traditional BibTgX will then ignore the accent and use the
ASCII letter for sorting.

Apart from it being inconvenient, there are two major issues with this conven-
tion. One subtle problem is that the extra set of braces suppresses the kerning on
both sides of all non-ASCII letters. But, also, simply ignoring all accents may not

be the correct way to handle them, for alphabetical reasons which depend on the
language.

These are the major reasons why switching to bibtex8, the 8-bit implementa-
tion of BibTgX, is advisable. It can sort in a case-sensitive way and it can handle
(single byte) non-ASCII characters properly, provided that you supply it with a
suitable csf file.

The biblatex package is also capable of handling conflicting encodings in
.tex and .bib files, provided that you specify the encoding of the .bib file with
the bibencoding package option. [4] For more details about some sample config-
urations you might try, please have a look at [4]. A good advice is to use biblatex
and biber. [2]

One might then think about converting his .bib files to, say, latini, and
include them using

\begingroup
\inputencoding{latini}
\bibliography{nameofthebibfile}

\endgroup

This will evidently work, but this is disadviced. If you are under Microsoft Win-
dows ©, you will not need to use these four lines, simply because you have great
chances to deal with latini files. But, under Linux (UTF-8), your .bib files will
be defaulted to utf8, which means that these lines would do the trick.

We reviewed how to correctly encode I£TEX documents. We did neither speak
about font encoding, nor about mapping multiple encodings into one. We as-
sumed by ‘encoding’ the name ‘input encoding.” We shall now take a quick look
at these two subjects. The reader might also distinct these concepts from the
language rules that need to be loaded appropriately for each language, using e.g.

\usepackage [language] {babel}

3.4 Font encodings

Roughly, font encoding defines at which position inside a TgX-font each letter is
stored.

The default LaTeX font encoding is 0T1, the encoding of the original Computer
Modern TgX font. It contains only the 128 characters of the 7-bit ASCII character

10

set. [1] When accented characters are required, TEX creates them by combining
a normal character with an accent. While the resulting output looks perfect, this
approach stops the automatic hyphenation from working inside words contain-
ing accented characters. Besides, some of Latin letters could not be created by
combining a normal character with an accent, to say nothing about letters of
non-Latin alphabets, such as Greek or Cyrillic. To overcome these shortcomings,
several 8-bit CM-like font sets were created. [9]
For more details, please check [9].

3.5 Mapping multiple encodings into one

Multiple input encodings could be mapped into one font encoding, which re-
duces number of required font sets. Font encodings are handled through the
fontenc package:

\usepackage [encoding] {fontenc}

where encoding is the font encoding. It is possible to load several encodings
simultaneously. [9]

3.6 Summary

The beginner might be impressed by the complexity of things. However, this is
not that complicated for european and american languages. For these languages,
you will generally use utf8 as an encoding for inputenc. That should not pose
any problem except for Greek, for which there are specific solutions.

Now that you will use utf8, your files” proper encoding should also be en-
coded with an encoding which will not be more restricted than ut£8, so that you
do not loose information. As utf8 is one of the most complete encodings, the
best thing is to save your files using utf8. It can be achieved under Microsoft
Windows ©, and this is the default locale for Linux. If you are under Microsoft
Windows ©, and that you do not encode your files using utf8, you might have
troubles, but as, generally, people type documents in either their native language,
or English, this should not be that problematic.

Keep in mind that we only saw an overview of these problems, and that spe-
cific languages might be problematic, especially for minorities. We did not give

11

a complete recipe to make everything work, but these guidelines should foster a
better comprehension of this problem.

References

[1] Surviving the TgX font encoding mess; Understanding the world of TgX fonts
and mastering the basics of fontinst, 1999. ftp://tug.ctan.org/tex-archive/
fonts/utilities/fontinst/doc/talks/et99-font-tutorial.pdf.

[2] Fairbairns, Robin, Milde, Giinter, Lehman, Philipp, Merciadri, Luca, Stephani,
Philipp and Wafienhoven, Dominik. Encoding remarks (comp.text.tex discus-
sion), 2010.

[3] Korpela, Jukka. A tutorial on character code issues, 2009. http://www.cs.tut.
fi/~jkorpela/chars.html.

[4] Philipp Lehman. The biblatex Package, 2010. http://www.ctan.org/tex-
archive/macros/latex/exptl/biblatex/doc/biblatex.pdf.

[5] Medina Arellano, Gonzalo and Merciadri, Luca. (Space between address,
etc., and the beginning of the text: lettre class - comp.text.tex | Google
Groups, 2010. http://groups.google.com/group/comp.text.tex/browse_
thread/thread/048bbbf2d2537¢c39.

[6] Scott Pakin. Comprehensive IXTEX Symbol list, 2008. http://www.ctan.org/
tex-archive/info/symbols/comprehensive/symbols-a4.pdf.

[7] MacKichan Software. MacKichan Software - The Home of Sc. WorkPlace,
Sc. Word, and Sc. Notebook, 2009. http://www.mackichan.com/index.html?
techtalk/574.htm~mainFrame.

[8] Tuteurs Enseignement. (Ecrire une lettre avec LaTeX), 2010. http://www.
tuteurs.ens.fr/logiciels/latex/lettre.html.

[9] Wikipedia. LaTeX/Internationalization - Wikibooks, collection of
open-content textbooks, 2010. http://en.wikibooks.org/wiki/LaTeX/
Internationalization.

12

ftp://tug.ctan.org/tex-archive/fonts/utilities/fontinst/doc/talks/et99-font-tutorial.pdf
ftp://tug.ctan.org/tex-archive/fonts/utilities/fontinst/doc/talks/et99-font-tutorial.pdf
http://www.cs.tut.fi/~jkorpela/chars.html
http://www.cs.tut.fi/~jkorpela/chars.html
http://www.ctan.org/tex-archive/macros/latex/exptl/biblatex/doc/biblatex.pdf
http://www.ctan.org/tex-archive/macros/latex/exptl/biblatex/doc/biblatex.pdf
http://groups.google.com/group/comp.text.tex/browse_thread/thread/048bbbf2d2537c39
http://groups.google.com/group/comp.text.tex/browse_thread/thread/048bbbf2d2537c39
http://www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf
http://www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf
http://www.mackichan.com/index.html?techtalk/574.htm~mainFrame
http://www.mackichan.com/index.html?techtalk/574.htm~mainFrame
http://www.tuteurs.ens.fr/logiciels/latex/lettre.html
http://www.tuteurs.ens.fr/logiciels/latex/lettre.html
http://en.wikibooks.org/wiki/LaTeX/Internationalization
http://en.wikibooks.org/wiki/LaTeX/Internationalization

	Introduction
	Customization of a document class: example with lettre
	Removing line bending
	Making the space smaller, between address, etc., and the beginning of the text

	Encoding problems
	The inputenc package: the encoding of the document
	Description
	Encoding choice
	Solutions?
	Platforms

	The proper encoding of the document file
	Directly writing characters without commands
	Converting a file to the good encoding

	Dealing with BiB files
	Font encodings
	Mapping multiple encodings into one
	Summary

