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This chapter presents an introduction to graph colouring algorithms. The fo-
cus is on vertex-colouring algorithms that work for general classes of graphs
with worst-case performance guarantees in a sequential model of computa-
tion. The presentation aims to demonstrate the breadth of available tech-
niques and is organized by algorithmic paradigm.

1. Introduction

A straightforward algorithm for finding a vertex colouring is to search systemati-
cally among all mappings from the set of vertices to the set of colours, a technique
often called exhaustive or brute force:

Algorithm X (Exhaustive search) Given an integer q ≥ 1 and a graph G = (V,E),
output a vertex q-colouring if it exists.

X1. [Main loop] For each mapping f : V → {1,2, . . . ,q}, do Step X2.
X2. [Check f ] If every edge vw satisfies f (v) , f (w), then output f .
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This algorithm has few redeeming qualities, other than its being correct. We
consider it here because it serves as an opportunity to make explicit the framework
in which we present more interesting algorithms.

Model of computation If G has n vertices and m edges, then the number of
operations used by Algorithm X can be asymptotically bounded by O(qn (n + m)),
which we call the running time of the algorithm.

To make such a claim, we tacitly assume a computational model that includes
primitive operations, such as iterating over all mappings from one finite set A to
another finite set B in time O(|B | |A | ) (Step X1), or iterating over all edges in time
O(n+m) (Step X2). For instance, we assume that the input graph is represented by
an array of sequences indexed by vertices; the sequence stored at vertex v contains
the neighouring vertices N (v), see Fig. 1. This representation allows us to iterate

a

z
b

i

cg

d
l

m

p

e

u

r

v

st

a

m

b

c

m

c

e

s

b

d

t

i

l

z

e

c

i

s

g

z

i

s

e

d

l

d

m

a

b

r

t

z

v

p

v

r

s

t

m

s

c

e

i

r

t

m

r

d

u v

m

p

z

m

d

g

Fig. 1. A graph and its representation as an array of sequences.

over the neighbours of a vertex in time O(deg v). (An alternative representation,
such as an incidence or adjacency matrix, would not allow this.) Note that detecting
whether two graphs are isomorphic is not a primitive operation. The convention
of expressing computational resources using asymptotic notation is consistent with
our somewhat cavalier attitude towards the details of our computational model.
Our assumptions are consistent with the behaviour of a modern computer in a high-
level programming language. Nevertheless, we will explain our algorithms in plain
English.

Worst-case asymptotic analysis Note that we could have fixed the colouring of a
specific vertex v as f (v) = 0, reducing Algorithm X’s running time to O(qn−1(n +

m)). A moment’s thought shows that this reasoning can then be extended to cliques
of size r ≥ 1: search through all

(
n
r

)
induced subgraphs until a clique of size r is

found, arbitrarily map these vertices to {1,2, . . . ,r } and then let Algorithm X colour
the remaining vertices. This reduces the running time to O(qn−ω (G)nω (G) (n +
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m)), where ω(G) is the clique size. This may be quite useful for some graphs.
Another observation is that in the best case, the running time is O(n+m). However,
we will normally not pursue this kind of argument. Instead, we are maximally
pessimistic about the input and the algorithm’s underspecified choices. In other
words, we understand running times as worst-case performance guarantees, rather
than ‘typical’ running times or average running times over some distribution.

Sometimes we may even say that Algorithm X requires time qn poly(n), where
we leave the polynomial factor unspecified in order to signal the perfunctory atten-
tion we extend to these issues.

Overview and notation Straightforward variants of Algorithm X can be used to
solve some other graph colouring problems. For instance, to find a list-colouring,
we restrict the range of values for each f (v) to a given list; to find an edge-
colouring, we iterate over all mappings f : E → {1,2, . . . ,q}. Another modifica-
tion is to count the number of colourings instead of finding just one. These exten-
sions provide baseline algorithms for list-colouring, edge-colouring, the chromatic
polynomial, the chromatic index, and so forth. However, for purposes of exposi-
tion, we present algorithms in their least general form, emphasizing the algorithmic
idea rather than its (sometimes quite pedestrian) generalizations. The algorithms
are organized by algorithmic technique rather than problem type, graph class, op-
timality criterion, or computational complexity. These sections are largely inde-
pendent and can be read in any order, except perhaps for Algorithm G in Section
2. The final section takes a step back and relates the various colouring problems to
each other.

2. Greedy colouring

The following algorithm, sometimes called the greedy or sequential algorithm,
considers the vertices one by one and uses the first available colour.

Algorithm G (Greedy vertex-colouring) Given a graph G with maximum degree
∆ and an ordering v1,v2, . . . ,vn of its vertices, finds a vertex-colouring f of G with
maxi |{ j < i : v jvi ∈ E }| + 1 ≤ ∆ + 1 colours.

G1. [Initialize] Set i = 1.
G2. [Next vertex] If i = n + 1, then terminate with f as the output. Otherwise,

increase i.
G3. [Find the colours N (vi )] Compute the set C =

⋃
j<i f (v j ) of colours already

assigned to the neighbours of vi .
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G4. [Assign the smallest available colour to vi] For increasing c = 0,1, . . . , check
whether c ∈ C. If not, set f (vi ) = c and return to Step G2.

For the number of colours, it is clear that in Step G4, the value of c is at most
|C |, which equals the number of neighbours of vi among v1,v2, . . . ,vi−1. In partic-
ular, Algorithm G establishes that χ(G) ≤ ∆(G) + 1.

For the running time, note that both Steps G3 and G4 take at most O(1 +

deg vi ) operations. Summing over all v, the total time spent in Steps G3 and G4 is
asymptotically bounded by n + (deg v1 + deg v2 + · · · + deg vn ) = n + 2m. Thus,
Algorithm G takes time O(n + m).

Optimal ordering The size of the colouring computed by Algorithm G depends
heavily on the vertex ordering. Its worst-case behaviour is poor. For instance, it
spends 1

2 n colours on the 2-colourable crown graph shown in Fig. 2.

v2

v1

v4

v3

v6

v5

· · ·

· · ·

vn

vn−1

Fig. 2. The crown graph.

On the other hand, for every graph there exists an ordering for which Algo-
rithm G uses an optimal number of colours; indeed, any ordering that satisfies
f (vi ) ≤ f (vi+1) for an optimal colouring f has this property. Since there are n!
different orderings, this observation is algorithmically quite useless. An ordering
is perfect for a graph if for every induced subgraph, Algorithm G results in an op-
timal colouring; triangulated graphs and comparability graphs always admit such
an ordering, as shown by Chvátal [11].

Randomness Algorithm G performs quite well on random graphs, whatever the
vertex ordering. For almost all n-vertex graphs, it uses n/(log n − 3 log log n)
colours, which is roughly twice the optimum value (see [15]).

This suggests the following randomized algorithm. For a graph G, choose a
vertex ordering at random and then execute Algorithm G. For many problems, it is
a sound algorithmic design strategy to trade good average-case behaviour for good
(expected) worst-case behaviour in this way. However, for Algorithm G the result
is quite poor: For every ε > 0 there exist graphs with chromatic number nε for
which the randomized algorithm uses Ω(n/ log n) colours with high probability, as
shown by Kučera [26].
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Other orderings In the largest-first vertex-degree ordering introduced by Welsh
and Powell [38], the vertices are ordered such that deg v1 ≥ deg v2 ≥ · · · ≥ deg vn .
This establishes the bound χ(G) ≤ 1+maxi min{deg vi , i−1}, which is sometimes
better than 1 + ∆, such as in Fig. 3.

v1

v2

v3

v4 v5

v6

Fig. 3.

Closely related in spirit is Matula’s smallest-last ordering [32], given as fol-
lows: choose as the last vertex vn a vertex of minimum degree in G, and proceed
recursively with G − vn , see Fig. 4. With this ordering, the size of the resulting
colouring is be bounded by the Szekeres–Wilf bound [36],

χ(G) ≤ dgn(G) + 1 ,

where the degeneracy dgn(G) is the maximum over all subgraphs H of G of the
minimum degree δ(H). This ordering optimally colours crown graphs and many
other classes of graphs, and uses six colours on any planar graph.

largest-first:
v6 v1 v4 v3 v2 v5

smallest-last:
v6 v4 v2 v1 v3 v5

Fig. 4.

Other orderings are dynamic in the sense that the ordering is determined during
the execution of the algorithm, rather than in advance. For example, Brélaz [6]
suggests choosing the next vertex from among those adjacent to the largest number
of different colours. Many other orderings have been investigated, some of them
perform quite well on instances that one may encounter ‘in practice’, but attempts
at formalizing what this means are quixotic. See [25] and [31] for surveys.

2-colourable graphs

Of particular interest are those vertex orderings in which every vertex vi is adjacent
to some vertex v j with j < i. Such orderings can be computed in time O(m + n)
using basic graph-traversal algorithms. This algorithm is sufficiently important to
be made explicit:
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Algorithm B (Bipartition) Given a connected graph G, finds a 2-colouring if one
exists. Otherwise, finds an odd cycle.

B1. [Initialize] Let f (v1) = 1 and let Q (the ‘queue’) be an empty sequence. For
each neighbour w of v1, set p(w) = v1 (the ‘parent’ of w) and add w to Q.

B2. [Next vertex] If Q is empty, go to Step B3. Otherwise, remove the first vertex
v from Q. Set f (v) = 3 − f (p(v)). For each neighbour w of v, if w is not yet
coloured and does not belong to Q, then set p(w) = v and add w to the end of
Q. Repeat Step B2.

B3. [Verify 2-colouring] Iterate over all edges to verify that f (v) , f (w) for every
edge vw. If so, output f and terminate.

B4. [Construct odd cycle] Let vw be an edge with f (v) = f (w). Let u be the
nearest common ancestor of v and w in the tree defined by p. Return the path
w,p(w),p(p(w)), . . . ,u, followed by the reversal of the path v,p(v),p(p(v)),
. . . ,u, followed by the edge vw.

Fig. 5 shows an execution of Algorithm B finding a 2-colouring.

Fig. 5. Execution of Algorithm B.

Algorithm B is an example of a ‘certifying’ algorithm: An algorithm that pro-
duces a witness to certify its correctness, in this case an odd cycle if the graph is
not 2-colourable. To see that the cycle returned in B4 is indeed odd, note that on
the two paths w,p(w),p(p(w)), . . . ,u and v,p(v),p(p(v)), . . . ,u, each vertex has a
different colour than its predecessor. Since the respective endpoints of both paths
have the same colour, they must contain the same number of edges modulo 2. In
particular, their total length is even. With the additional edge vw, the length of the
resulting cycle is odd.

The order in which vertices are considered by Algorithm B depends on the
first-in first-out behaviour of the queue Q. The resulting ordering called breadth-
first. An important variant uses a last-in first-out ‘stack’ instead of a queue; the
resulting ordering is called depth-first. Fig. 6 shows the resulting traversal on the
instance from Fig. 5.
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Fig. 6. Execution of Algorithm B using depth-first search.

Wigderson’s algorithm

Algorithms B and G appear together in the following algorithm due to Wigder-
son [40].

Algorithm W (Wigderson’s algorithm) Given a 3-chromatic graph G, finds a
vertex-colouring with O(

√
n) colours.

W1. [Initialize] Let c = 1.
W2. [∆(G) ≥ d

√
ne] Consider a vertex v in G with deg v ≥ d

√
ne; if no such

vertex exists, go to Step W3. Use Algorithm B to 2-colour the neighbour-
hood G[N (v)] with colours c and c + 1. Remove N (v) from G, increase c by
χ(G[N (v)]). Repeat Step W2.

W3. [∆(G) < d
√

ne] Use Algorithm G to colour the remaining vertices with the
colours c,c + 1, . . . ,c + d

√
ne.

Fig. 7 shows an execution of Algorithm W finding a 5-colouring of the 16-
vertex instance from Fig. 1.
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Fig. 7. Execution of Algorithm W.

The running time is clearly bounded by O(n + m). To analyse the number
of colours, we first need to verify that Step W2 is in fact correct. Since G is 3-
colourable, so is the subgraph induced by N (v) ∪ {v}. Now, if G[N (v)] requires
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three colours, then G[N (v) ∪ {v}] requires four, so G[N (v)] is 2-colourable. Note
that Step W2 can be run at most O(

√
n) times, each using at most two colours. Step

W3 expends another d
√

ne colours according to Algorithm G.
Algorithm W extends to graphs with χ(G) > 3 quite naturally. In this case,

Step W2 calls Algorithm W recursively to colour ( χ(G) − 1)-colourable neigh-
bourhoods. The resulting algorithm uses O(n1−1/(1−χ(G))) colours.

3. Recursion

Recursion is a fundamental algorithmic design technique. The idea is to reduce a
problem to one or more simpler instances of the same problem.

Contraction

The oldest recursive construction for graph colouring expresses P(G,q) and χ(G)
in terms of edge contractions: For nonadjacent vertices v, w and integer q =

0,1, . . . ,n,

P(G,q) = P(G + vw,q) + P(G/vw,q) ,

χ(G) = min{ χ(G + vw), χ(G/vw)} ,

see Chapter 3, Section 2.1. These ‘addition–contraction’ recurrences immediately
imply a recursive algorithm. For instance,

P( ,q) = P( ,q) + P( ,q)

= P(K5,q) + P(K3,q) = q(q − 1)(q − 2)
(
1 + (q − 3)(q − 4)

)
.

Note that the graphs at bottom of the recursion are complete.
For sparse graphs, it is more useful to express the same idea as a ‘deletion–

contraction’ recurrence, which deletes and contracts edges until the graph is empty:

P(G,q) = P(G/e,q) − P(G − e,q) (e ∈ E) .

Many other graph problems beside colouring can be expressed by a deletion–
contraction recurrence. The most general graph invariant that can be defined (and
therefore computed) in this fashion is the Tutte polynomial, see [5] and [18] for its
algorithmic aspects.

The algorithm implied by these recursions is sometimes called Zykov’s algo-
rithm [42]. Here is the deletion–contraction version.

Algorithm C (Contraction) Given a graph G, computes P(G,q) =
∑n

i=0 aiqi as a
sequence of coefficients (a0,a1, . . . ,an ).
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C1. [Base] If G has no edges then return the coefficients (0,0, . . . ,0,1), corre-
sponding to the polynomial P(G,q) = qn .

C2. [Recursion] Pick an edge e and construct the graphs G′ = G/e and G′′ =

G − e. Call Algorithm C recursively to compute P(G′,q) and P(G′′,q) as
sequences of coefficients (a′0,a

′
1, . . . ,a

′
n ) and (a′′0 ,a

′′
1 , . . . ,a

′′
n ). Return (a′0 −

a′′0 ,a
′
1− a′′1 . . . ,a′n − a′′n ), corresponding to the polynomial P(G/e,q)−P(G−

e,q).

To analyse the running time, let T (r) be the number of executions of Step C1
for graphs with n vertices and m edges, where r = n + m. The two graphs con-
structed in Step C2 have sizes n−1+m−1 = r−2 and n+m−1 = r−1, respectively,
so T satisfies T (r) = T (r − 1) +T (r − 2). This is a well-known recurrence with so-
lution T (r) = O(ϕr ), where ϕ = 1

2 (1 +
√

5) is the golden ratio. Thus, Algorithm C
requires ϕn+m poly(n) = O(1.619n+m ) time. A similar analysis for the algorithm
implied by the deletion–addition recursion gives ϕn+m poly(n), where m =

(
n
2

)
−m

is the number of edges in the complement of G.
These worst-case bounds are often very pessimistic. They do not take into

account that recurrences can be stopped as soon as the graph is a tree (or some
other easily recognized graph whose chromatic polynomial is known as a closed
formula), or that P factorizes over connected components. Moreover, we can use
graph isomorphism heuristics and tabulation to avoid some unnecessary recompu-
tation of isomorphic subproblems, see [18]. Thus, Algorithm C is a more useful
algorithm than its exponential running time may indicate.

Vertex partitions

We turn to a different recurrence, which expresses χ(G) in terms of induced sub-
graphs of G. By taking S be a a colour class of an optimal colouring of G, we
observe that every graph has an independent set of vertices S for which χ(G) =

1 + χ(G − S). Thus, we have

χ(G) = 1 + min χ(G − S) , (1)

where the minimum is taken over all non-empty independent sets S in G.

Dynamic programming The recursive algorithm implied by (1) is too slow to
be of interest. We expedite it using the fundamental algorithmic idea of dynamic
programming. The central observation is that the subproblems χ(G − S) for var-
ious vertex-subsets S appearing in (1) are computed over and over. It thus makes
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sense to store these 2n values in a table when they are first computed. Subsequent
evaluations can then be handled by consulting the table.

We express the resulting algorithm in a bottom-up fashion:

Algorithm D (Dynamic programming) Given a graph G, computes a table with
T (W ) = χ(G[W ]) for each W ⊆ V.

D1. [Initialize] Construct a table with (initially undefined) entries T (W ) for each
W ⊆ V . Set T (∅) = 0.

D2. [Main loop] List all vertex-subsets W1,W2, . . . ,W2n ⊆ V in non-decreasing
order of size. Do Step D3 for each W = W2,W3, . . . ,W2n , then terminate.

D3. [Determine T (W )] Set T (W ) = 1+min T (W \S), where the minimum is taken
over all non-empty independent sets S in G[W ].

The ordering of subsets in the main loop D2 ensures that each set is handled
before any of its supersets. In particular, all values T (W \S) needed in Step D3 will
have been previously computed, so the algorithm is well defined. The minimization
in Step D3 is implemented by iterating over all 2|W | subsets of W . Thus, the total
running time of Algorithm D is within a polynomial factor of∑

W⊆V

2|W | =
n∑

k=0

(
n
k

)
2k = 3n . (2)

This rather straightforward application of dynamic programming already pro-
vides the non-trivial insight that the chromatic number can be computed in vertex-
exponential time, rather than depending exponentially on m, χ(G), or a superlinear
function of n.

Maximal independent sets To pursue this idea a little further we notice that S in
(1) can be assumed to be a maximal independent set—that is, not a proper subset
of another independent set. To see this, let f be an optimal colouring and consider
the colour class S = f −1(0). If S is not maximal, then repeatedly pick a vertex v

that is not adjacent to S, and set f (v) = 0.
By considering the disjoint union of 1

3 k triangles, we see that there are exist
k-vertex graphs with 3k/3 maximal independent sets. It is known that this is also
an upper bound, and that the maximal independent sets can be enumerated within
a polynomial factor of that bound (see [7], [34] and [37]). We therefore have the
following result:

Theorem 3.1. The maximal independent sets of a graph on k vertices can be listed
in time O(3k/3) and polynomial space.
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We can apply this idea to Algorithm D. The minimization in Step D3 now takes
the following form:

D3′. [Determine T (W )] Set T (W ) = 1 + min T (W \ S), where the minimum is
taken over all maximal independent sets S in G[W ].

Using Theorem 3.1 with k = |W | for the minimization in Step D3′, the total
running time of Algorithm D comes within a polynomial factor of

n∑
k=0

(
n
k

)
3k/3 = (1 + 31/3)n = O(2.443n ) .

For many years, this was the fastest known algorithm for the chromatic number.

3.1. 3-colouring

Of particular interest is the 3-colouring case. Here, it makes more sense to let the
outer loop iterate over all maximal independent sets and check if the complement
is bipartite.

Algorithm L (Lawler’s algorithm) Given a graph G, finds a 3-colouring if one
exists.

L1. [Main loop] For each maximal independent set S of G, do Step L2.
L2. [Try f (S) = 2] Use Algorithm B to find a colouring f : V \ S → {1,2} of

G − S if one exists. In that case, extend f to all of V by setting f (v) = 3 for
each v ∈ S, output f , and terminate.

The running time of Algorithm L is dominated by the number of executions
of L2, which, according to Theorem 3.1, is 3n/3. Thus, Algorithm L decides 3-
colourability in time 31/3 poly(n) = O(1.442n ) and polynomial space.

The use of maximal independent sets goes back to Christofides [10], while
Algorithms D and L are due to Lawler [28]. A series of improvements to these
ideas have further reduced these running times. At the time of writing, the best-
known time bound for 3-colouring is O(1.329n ) by Beigel and Eppstein [1].

4. Subgraph expansion

The Whitney expansion [39] of the chromatic polynomial is

P(G,q) =
∑
A⊆E

(−1) |A |qk (A) ;
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see Chap. 3, Sec. 2.2 for a proof. It expresses the chromatic polynomial as an alter-
nating sum of terms, each of which depends on the number of connected compo-
nents k (A) of the edge-subset A ⊆ E. Determining k (A) is a well-studied algorith-
mic graph problem that can be solved in time O(n+m) (for example, by depth-first
search). Thus, the Whitney expansion can be evaluated in time O(2m (n + m)).

A more recent expression (see [2]) provides an expansion over induced sub-
graphs:

Theorem 4.1. For W ⊆ V, let g(W ) be the number of non-empty independent sets
in G[W ]. Then G can be q-coloured if and only if∑

W⊆V

(−1) |V \W |
(
g(W )

)q > 0 . (3)

Proof. For each W ⊆ V , the term
(
g(W )

)q counts the number of ways to select q
non-empty independent sets S1,S2, . . . ,Sq , where Si ⊆ W . For U ⊆ V , let h(U)
be the number of ways to select q non-empty independent sets whose union is U .
Then (g(W ))q =

∑
U⊆W h(U), so∑

W⊆V

(−1) |V \W |
(
g(W )

)q
=

∑
W⊆V

(−1) |V \W |
∑

U⊆W

h(U)

=
∑
U⊆V

h(U)
∑
W⊇U

(−1) |V \W | = h(V ) .

To see the last step, note that the inner sum (over W , with U ⊆ W ⊆ V ) van-
ishes except when U = V , because there are as many odd-sized as even-sized sets
sandwiched between different sets, by the principle of inclusion–exclusion.

If h(V ) is non-zero, then there exist independent sets S1,S2, . . . ,Sq whose
union is V . These sets correspond to a colouring: associate a colour with the
vertices in each set, breaking ties arbitrarily.

For each W ⊆ V , we can compute the value g(W ) in time O(2|W |m) by con-
structing each non-empty subset of W and testing it for independence. Thus, the
total running time for evaluating (3) is within a polynomial factor of 3n , just as
in the analysis (2) for Algorithm D; however, the space requirement here is only
polynomial. We can further reduce the running time to O(2.247n ) using dedicated
algorithms for evaluating g(W ) from the literature (see [3]).

If exponential space is available, we can do even better. To that end, we first
introduce a recurrence for g.

Theorem 4.2. Let W ⊆ V. We have g(∅) = 0, and, for every v ∈ W,

g(W ) = g(W \ {v}) + g(W \ N[v]) + 1 . (4)
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Proof. Fix v ∈ W . The non-empty independent sets S ⊆ W can be partitioned into
two classes: either v < S or v ∈ S. In the first case, S is a non-empty independent
set with S ⊆ W \ {v} and thus accounted for by the first term of (4). Consdider
the second case. Since S contains v and is independent, it contains no vertex from
N (v). Thus, S is a non-empty independent set with {v} ⊆ S ⊆ W \ N (v). The
number of such sets is the same as the number of (not necessarily non-empty)
independent sets S′ with S′ ⊆ W \ N[v], because of the bijective mapping S 7→ S′

where S′ = S \ {v}. By induction, the number of such sets is g(W \ N[v]) + 1,
where the ‘+1’ term accounts for the empty set.

This leads to the following algorithm, due to Björklund et al. [3]:

Algorithm I (Inclusion–exclusion) Given a graph G and an integer q ≥ 1, deter-
mines whether G can be q-coloured.

I1. [Tabulate g] Set g(∅) = 0. For each non-empty subset W ⊆ V in inclusion
order, pick v ∈ W and set g(W ) = g(W \ {v}) + g(W \ N[v]) + 1.

I2. [Evaluate (3)] If
∑

W⊆V (−1) |V \W |
(
g(W )

)q > 0 return ‘yes,’ otherwise ‘no.’

Fig. 8 shows the computations of Algorithm I on a small graph, with aq (W ) =

(−1) |V \W |
(
g(W )

)q . The sum of the a2 is 0, so there is no 2-colouring. The sum
of the a3 is 18, so a 3-colouring exists.

uv

w

x

W g a2 a3

∅ 0 0 0
{u} 1 −1 −1
{v} 1 −1 −1
{w} 1 −1 −1
{x} 1 −1 −1
{u,v} 2 4 8
{u,w} 2 4 8
{u, x} 2 4 8

W g a2 a3

{v,w} 2 4 8
{v, x} 3 9 27
{w, x} 3 9 27
{u,v,w} 3 −9 −27
{u,v, x} 4 −16 −64
{u,w, x} 4 −16 −64
{v,w, x} 5 −25 −125

V 6 36 216

Fig. 8. Execution of Algorithm I

Both Steps I1 and I2 take time 2n poly(n), and the algorithm requires a table
with 2n entries.

With slight modifications, Algorithm I can be made to work for other colouring
problems such as the chromatic polynomial and list-colouring, also in time and
space 2n poly(n) (see [3]); currently, this is the fastest known algorithm for these
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problems. For the chromatic polynomial, the space requirement can be reduced to
O(1.292n ), while maintaining the 2n poly(n) running time (see [4]).

5. Local augmentation

Sometimes, a nonoptimal colouring can be improved by a local change that re-
colours some vertices. This general idea is the basis of many local search heuristics
but also several central theorems.

Kempe changes

An important example, for edge colouring, establishes Vizing’s theorem, ∆(G) ≤
χ′(G) ≤ ∆(G) + 1. Chapter 5 gives a modern and modern general presentation
of the underlying idea, our focus in the present chapter is to make the algorithm
explicit.

A colour is free at v if it does not appear on an edge at v. (We consider an edge
colouring with ∆(G) + 1 colours, so every vertex has at least one free colour.) A
(Vizing) fan around v is a maximal set of edges vw0,vw1, . . . ,vwr , where vw0 is
not yet coloured and the other edges are coloured as follows. For j = 0,1, . . . ,r , no
colour is free at both v and w j . For j = 1,2, . . . ,r , the jth fan edge vw j has colour
j and the colours appearing around w j include 1,2, . . . , j but not j + 1. Fig. 9(a).
Such a fan allows a recolouring by moving colours as follows: remove the colour
from vw j and set f (vw0) = 1, f (vw1) = 2, . . . , f (vw j−1) = j. This is called
downshifting from j, see Fig. 9(b).

(a)

v
w0

w1

w2
w3

w4

w5

1
2 3

4
5

1 1 2

12
3

1
2

3
4

(b)

v
w0

w1

w2 w3
w4

w51
2

3
4
5

(c)

v
w0

w1

w2 w j

wr

wr+1

1
2 j

0
j

0

0 j 0

r

r + 1

Fig. 9. (a) A fan. (b) Downshifting from 3. (c) Step V7. Colour j is free at wr+1.

Algorithm V (Vizing’s algorithm) Given a graph G, finds an edge colouring with
at most ∆(G) + 1 colours in time O(nm).
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V1. [Initialize] Order the edges arbitrarily e1,e2, . . . ,em . Let i = 0.
V2. [Extend colouring to next edge] Increment i. Let vw = ei .
V3. [Easy case] If there is a colour c that is free at both v and w then set f (vw) = c

and go back to V2.
V4. [Find w0 and w1] Let w0 = w. Pick a free colour at w0 and call it 1. Let vw1

be the edge incident on v coloured 1. (Such an edge exists because 1 is not
also free at v.)

V5. [Find w2] Pick a free colour at w1 and call it 2. If 2 is also free at v, then set
f (vw0) = 1, f (vw1) = 2, and go back to V2. Otherwise, let vw2 be the edge
incident on v coloured 2. Set r = 2.

V6. [Extend fan to wr+1] Pick a free colour at wr and call it r + 1. If r + 1 is also
free at v then downshift from r , recolour f (vwr ) = cr+1 and go back to V2.
Otherwise, let vwr+1 be the edge incident on v coloured r + 1. If each colour
1,2, . . . ,r appears around wr+1 then increment r and repeat V6.

V7. [Build {0, j}-path from w j or from wr+1] Let j ∈ {1,2, . . . ,r } be a free colour
at wr+1 and let 0 , j be a colour free at v. Construct two maximal {0, j}-
coloured paths Pj and Pr+1 from w j and from wr+1, respectively, by following
edges of alternating colours 0, j,0, j, . . ., see Fig. 9(b). (The paths cannot both
end in v.) Choose k ∈ { j,r + 1} such that Pk does not end in v.

V8. [Flip colours on Pk ] Recolour the edges on Pk by exchanging 0 and j. Down-
shift from k, recolour f (vwk ) = 0, and return to V2.

To see that this algorithm is indeed correct, one needs to check that the re-
colourings in Steps V6 and V8 are legal. A careful analysis is given by Misra and
Gries [33].

For the running time, first note that Step V6 is repeated at most deg v times, so
the algorithm eventually has to leave that step. The most time-consuming step is
V7; a {0, j}-path can be constructed in time O(n) if we maintain for each vertex a
table of incident edges indexed by colour. Thus the total running time of Algorithm
V is O(mn).

Another example from this class of algorithms appears in the proof of Brooks’s
theorem [8], which relies on an algorithm that follows Algorithm G but attempts to
re-colour the vertices of bichromatic components whenever a fresh colour is about
to be introduced.

Random changes

There are many other graph colouring algorithms that fall under the umbrella of
local transformations. Of particular interest are local search algorithms that re-
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colour individual vertices at random. This idea defines a random process on the set
of colourings called the Glauber or Metropolis dynamics, or the natural Markov
chain Monte Carlo method. The aim here is not to find a colouring (since we will
have q > 4∆ this would be easily done by Algorithm G), but to find a colouring
that is uniformly distributed among all q-colourings.

Algorithm M (Metropolis) Given a graph G with maximum degree ∆ and a q-
colouring f0 for q > 4∆, finds a uniform random q-colouring in polynomial time.

M1. [Outer loop] Set T = dqn ln 2n/(q − 4∆)e. Do Step M2 for t = 1,2, . . . ,T .
Return fT .

M2. [Recolour random vertex] Pick vertex v ∈ V and colour c ∈ {1,2, . . . ,q} uni-
formly at random. Set f t = f t−1. If c does not appear among v’s neighbours,
then set f t (v) = c.

An initial colouring can be provided in polynomial time because q > ∆+1, such
as by Algorithm G. To see that the choice of initial colouring f0 has no influence
on the result fT , consider two different initial colourings f0 and f ′0 and execute
Algorithm M on both, using the same random choices for v and c in each step.

Let dt = |{ v : f t (v) , f ′t (v) }| be the number of disagreeing vertices after t
executions of Step M2. Each step can change only a single vertex, so |dt − dt−1 | ∈

{−1,0,+1}. We have dt = dt−1 + 1 only if f t−1(v) = f ′
t−1(v) but f t (v) , f ′t (v),

so exactly one of the two processes rejected the colour change. In particular, v
must have a (disagreeing) neighbour w with c = f t−1(w) , f ′

t−1(w) or f t−1(w) ,
f ′
t−1(w) = c. There are dt−1 choices for such a w and therefore 2∆dt−1 choices

for picking c and v. Similarly, we have dt = dt−1 − 1 only if f t−1(v) , f t−1(v)
and c does not appear in v’s neighbourhood in either f t−1 or f ′

t−1. There are at
least (q − 2∆)dt−1 such choices of c and v.

Thus, the expected value of dt can be bounded as follows:

E[dt ] ≤ E[dt−1] +
(q − 2∆)E[dt−1]

qn
−

2∆E[dt−1]
qn

= E[dt−1]
(
1 −

q − 4∆
qn

)
.

Iterating this argument and using d0 ≤ n, we have

E[dT ] ≤ n
(
1 −

q − 4∆
qn

)T
≤ n exp

(
−

T (q − 4∆)
qn

)
≤ n exp(− ln 2n) = 1

2 .

By Markov’s inequality, and because dT is a nonnegative integer, we conclude
Pr( fT = f ′T ) = Pr(dT = 0) ≥ 1 − Pr(dT ≥ 1) ≥ 1 − E[dT ] ≥ 1

2 .
We contend ourselves with this argument, which shows that the process is ‘suf-

ficiently random’ in the sense of being memoryless. Informally, we can convince
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ourselves that fT is uniformly distributed because we can assume that f ′0 in the
above argument was sampled according to such a distribution. This intution can be
formalized using standard coupling arguments for Markov chains; our calculations
above show that the ‘mixing time’ of Algorithm M is O(n log n).

Algorithm M and its variants have been very well studied, and the analysis
can be much improved, see [13] for a survey. Randomized local search has wide
appeal across disciplines, including simulations in statistical physics and heuristic
methods in combinatorial optimization.

6. Vector colouring

We now turn to a variant of vertex-colouring that is particularly interesting from an
algorithmic point of view.

Vector chromatic number

Let Sd−1 = { x ∈ Rd : ‖x‖ = 1 }. A vector q-colouring in d ≤ n dimensions is a
mapping x : V → Sd−1 from the vertex-set to the set of d-dimensional unit vectors
such that neighbouring vectors are ‘far apart’, in the sense that their scalar product
satisfies

〈x(v), x(w)〉 ≤ −
1

q − 1
, for vw ∈ E .

The smallest such number q is called the vector chromatic number ~χ(G), which
need not be an integer. For instance, the vertices of the 3-chromatic cycle C5 can be
laid out on the unit circle in the form of a pentagram . Then the angle between
vectors corresponding to neighbouring vertices is 4

5π, corresponding to the scalar
product −1/(

√
5 − 1), so ~χ(C5) ≤

√
5 < 3.

Theorem 6.1. If G has clique number ω(G), then ω(G) ≤ ~χ(G) ≤ χ(G).

Proof. For the first inequality, let W be a clique in G of size r = ω(G) and consider
a vector q-colouring x of G. Let y =

∑
v∈W x(v). Then

0 ≤ 〈y,y〉 ≤ r · 1 + r (r − 1) ·
(
−

1
q − 1

)
,

which implies that r ≤ q.
For the second inequality, we place the vertices belonging to each colour class

at the corners of a (q − 1)-dimensional simplex. To be concrete, let f : V →
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{0,1, . . . ,q − 1} be an optimal q-colouring. Define x(v) = (x1, x2, . . . , xn ) by

xi =


(
(q − 1)/q

)1/2 , if i = f (v) − 1 ;
−
(
q(q − 1)

)−1/2 , if i , f (v) − 1 and i < q ;
0 , if i ≥ q .

Then we have 〈x(v), x(v)〉 = 1 · (q − 1)/q + (q − 1) ·
(
q(q − 1)

)−1
= 1 and for

v and w with f (v) , f (w) we have 〈x(v), x(w)〉 = 2 ·
(
(q − 1)/q

)1/2
·
(
−
(
q(q −

1)
)1/2)

+ (q − 2) · (q(q − 1))−1 = −(q − 1)−1. Thus, x is a vector q-colouring, so
~χ(G) ≤ q.

What makes vector colourings interesting from the algorithmic point of view is
that they can be found in polynomial time, at least approximately, using algorithms
based on semidefinite programming. The details behind those constructions lie far
outside the scope of our presentation (see Gärtner and Matoušek [14]).

Theorem 6.2. Given a graph G with ~χ(G) = q, a vector (q + ε )-colouring of G
can be found in time polynomial in n and log(1/ε ).

For a graph with ω(G) = χ(G), Theorem 6.1 shows that the vector chromatic
number equals the chromatic number. In particular, it is an integer, and can be
determined in polynomial time using Theorem 6.2 with ε < 1

2 . This shows that the
chromatic number of perfect graphs can be determined in polynomial time. The
theory behind this result counts as one of the highlights of combinatorial optimiza-
tion (see Grötschel, Lovász and Schrijver [16]).

How does the vector chromatic number behave for general graphs? For q = 2,
the vectors have to point in exactly opposite directions. In particular, there can be
only 2 vectors for each connected component, so vector 2-colouring is equivalent
to 2-colouring.

But already for q = 3, the situation becomes more interesting. There exist vec-
tor 3-colourable graphs that are not 3-colourable. For instance, the Grötzsch graph,
the smallest triangle-free graph with chromatic number 4, admits the vector 3-
colouring shown in Fig. 10 as an embedding on the unit sphere. More complicated
constructions (that we cannot visualize) show that there exist vector 3-colourable
graphs with chromatic number at least n0.157 (see [12] and [22]).

Randomized rounding

Even though the gap between ~χ and χ can be large for graphs in general, vector
colouring turns out to be a useful starting point for (standard) colouring. The next
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Fig. 10. Left: The Grötzsch graph. Middle and right: A vector 3-colouring.

algorithm, due to Karger, Motwani and Sudan [22], translates a vector colouring
into a (standard) vertex-colouring using random hyperplanes.

Algorithm R (Randomized rounding of vector colouring) Given a 3-chromatic
graph G with maximum degree ∆, finds a q-colouring in polynomial time, where
the expected size of q is E[q] = O(∆0.681 log n).
R1. [Vector colour] Set ε = 2 · 10−5 and compute a vector (3 + ε )-colouring x

of G using semidefinite programming. Let α ≥ arccos(−1/(2 + ε )) be the
minimum angle in radians between neighbouring vertices.

R2. [Round] Set
r = dlogπ/(π−α) (2∆)e

and construct r random hyperplanes H1,H2, . . . ,Hr in Rn . For each vertex v,
let f (v) be the binary number brbr−1 · · · b1, where bi = 1 if and only if x(v)
is on the positive side of the ith hyperplane Hi .

R3. [Handle monochromatic edges recursively] Iterate over all edges to find the
set of monochromatic edges M = { vw ∈ E : f (v) = f (w) }. Recolour these
vertices by running Algorithm R recursively on G[M], with fresh colours.

Figure 11 illustrates the behaviour of Algorithm R on the vector 3-colouring
of the Grötzsch graph from Fig. 10. Two hyperplanes separate the vertices into
4 parts. The resulting vertex-colouring with colours from {0,1}2 is shown to the
right. In this example, the set M of monochromatic edges determined in Step M3
contains only the single edge v10v11, drawn bold in the figure.

Algorithm R algorithm runs in polynomial time, because Theorem 6.2 ensures
that step R1 can be performed in polynomial time.

We proceed to analyze the size of the final colouring. Step R2 uses the colours
{0,1, . . . ,2r−1}, so the number of colours used in each Step R2 is

2r ≤ (2∆)−1/ log(π/(π−α)) < (2∆)0.631 , (5)
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Fig. 11. Left and middle: Two hyperplanes. Right: The corresponding colouring.

what is more difficult is to bound the total number of recursive invocations. To this
end, we need to understand how fast the instance size, determined by the size of M
in Step R3, shrinks.

Let e be an edge whose endpoints received the vector colours x and y. Elemen-
tary geometrical considerations establish the following result.

Theorem 6.3. Let x,y ∈ Rd with angle ϕ (in radians). A random hyperplane in
Rd fails to separate x and y with probability 1 − ϕ/π.

The angle between the vectors x and y is at most α. (To gain some intuition of
this, if we ignore the error term ε , Theorem 6.3 shows that x and y end up on the
same side of a random hyperplane with probability 1− α/π ≤ 1− arccos(− 1

2 )/π =

1 − 2π/3π = 1
3 .) The edge e is monochromatic if all r independent random hyper-

planes fail to separate x and y in Step R2. Thus,

Pr(e ∈ M) ≤ (1 − α/π)r ≤ (π/(π − α))−r ≤ 1/2∆ .

By linearity of expectation, the expected size of M is

E[|M |] =
∑
e∈E

Pr(e ∈ M) ≤ m/2∆ ≤ 1
4 n .

Since each edge has two vertices, the expected number of vertices in the recursive
instance G[M] is at most 1

2 n. In general, for i > 2, the expected number of vertices
ni in the ith instance satisfies ni ≤ 1

2 ni−1. In particular, nt ≤ 1 after t = O(log n)
rounds, at which point the algorithm terminates. With the bound (5) on the number
of colours used per round, we conclude that the total number of colours used is
O(∆0.681 log n) in expectation.

In terms of ∆, Algorithm R is much better than the ∆ + 1 bound guaranteed by
Algorithm G. For an expression in terms of n, we are tempted to bound ∆ by O(n),
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but that just shows that the number of colours is O(n0.631 log n), which is worse
than the O(

√
n) colours from Algorithm W.

Instead, we employ a hybrid approach. Run Steps W1 and W2 as long as the
maximum degree of the graph G is larger than some threshold d. Then, colour the
remaining graph using Algorithm R. The number of colours used by the combined
algorithm is of the order of (2n/d) + (2d)0.631 log n, which is minimized around
d = n1/1.631 with value O(n0.387).

Variants of Algorithm R for general q-colouring and with intricate rounding
schemes have been investigated a lot further; see Langberg’s survey [27]. The
current best polynomial-time algorithm for colouring a 3-chromatic graph based
on vector colouring uses O(n0.208) colours, due Chlamtac [9].

7. Reductions

The algorithms in this chapter are summarized in Table 1.

Algorithm Time Problem

B, Bipartition O(n + m) 2-colouring
C, Contraction O(1.619n+m ) P(G,q)
D, Dynamic programming 3n poly(n) χ(G)
G, Greedy O(n + m) (∆(G) + 1)-colouring
I, Inclusion–exclusion 2n poly(n) χ(G)
L, Lawler’s algorithm O(1.443n ) 3-colouring
M, Metropolis dynamics poly(n) Random q-colouring (q > 4∆)
R, Rounded vector colouring poly(n) O(∆0.681 log n)-colouring for χ(G) = 3
V, Vizing’s algorithm O(mn) edge (∆(G) + 1)-colouring
W, Wigderson’s algorithm O(n + m) O(

√
n)-colouring for χ(G) = 3

X, Exhaustive search qn poly(n) P(G,q)

Table 1. Algorithms discussed in this survey

Not only do these algorithms achieve different running times and quality guar-
antees, they also differ in which specific problem they consider. Let us now be
more precise about the variants of the graph colouring problem:

Decision Given a graph G and an integer q, decide whether q can be q-coloured.

Chromatic number Given a graph G, compute the chromatic number χ(G).

Construction Given a graph G and an integer q, construct a q-colouring of G.



CHAPTER 14. GRAPH COLOURING ALGORITHMS 22

Counting Given a graph G and an integer q, compute the number P(G,q) of q-
colourings of G.

Sampling Given a graph G and an integer q, construct a random q-colouring of G.

Chromatic polynomial Given a graph G, compute of the chromatic polynomial,
that is, the coefficients of the integer polynomial q 7→ P(G,q).

Some of these problems are related by using fairly straightforward reductions.
For instance, the decision problem is easily solved using the chromatic number
by comparing q with χ(G); conversely, χ(G) can be determined by solving the
decision problem for q = 1,2, . . . ,n. It is also clear that if we can construct a q-
colouring, then we can decide that one exists. What is perhaps less clear is the other
direction. This is seen by a self-reduction that follows the contraction Algorithm C.

Reduction C (Construction using decision). Suppose that we have an algorithm
that decides whether a given graph G can be q-coloured. If G = Kn and n ≤ q, then
give each vertex its own colour and terminate. Otherwise, select two non-adjacent
vertices v and w in G. If G + vw cannot be q-coloured, then every q-colouring f of
G must have f (v) = f (w). Thus we can identify v and w and recursively find a q-
colouring for G/vw. Otherwise, there exists a q-colouring of G with f (v) , f (w),
so we recursively find a colouring for G + vw.

Some of our algorithms work only for specific, fixed q, such as Algorithm B
for 2-colourability or Algorithm L for 3-colourability. Obviously, they both reduce
to the decision problem where q is part of the input. But what about the other
direction? The answer turns out to depend strongly on q: The decision problem
reduces to 3-colorability, but not to 2-colorability.

Reduction L (q-colouring using 3-colouring). Given a graph G = (V,E) and an
integer q, constructs a graph H that is 3-colourable with colours {0,1,2} if and only
if G is q-colourable with colours {1,2, . . . ,q}.

First, to fix some colour names, the graph H contains a triangle with the ver-
tices 0,1,2. We assume that vertex i has colour i, for i ∈ {0,1,2}.

For each vertex v ∈ V , the graph H contains 2q vertices v1,v2, . . . ,vq and
v′1,v

′
2, . . . ,v

′
q . The intuition is that the vis act as indicators for a colour in G in the

following sense: If vi has colour 1 in H then vertex v received colour i in G. The
vertices are arranged as in Fig. 12(a); the right-most vertex is 1 or 2, depending
on the parity of q. The vertices v1,v2, . . . ,vq are all adjacent to 2, and so must be
coloured 0 or 1. Moreover, at least one of them must be coloured 1, since otherwise,
the colours for v′1,v

′
2, . . . ,v

′
q are forced to alternate as 1,2,1, . . ., conflicting with

the colour of the right-most vertex.
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Fig. 12.

Now consider an edge vw in G. Let v1,v2, . . . ,vq and w1,w2, . . . ,wq be the
corresponding ‘indicator’ vertices in H . For each colour i = 1, . . . ,q, the vertices
vi and wi are connected by a ‘fresh’ triangle as shown in Fig. 12(b). This ensures
that vi and wi cannot both be 1. In other words, v and w can not have received the
same colour.

The above reduction, essentially due to Lovász [30], can easily be extended
to larger, fixed q > 3, because G is q-colourable if and only if G with an added
‘apex’ vertex (adjacent to all other vertices) is (q + 1)-colourable. For instance,
4-colourability is not easier than 3-colourability for general graphs.

Thus, all q-colouring problems for q ≥ 3 are in some sense equally difficult.
This is consistent with the fact that case q = 2 admits a very fast algorithm (B),
whereas none of the others does.

Many constructions have been published that show the computational difficulty
of colouring for restricted classes of graphs. We will sketch an interesting exam-
ple due to Stockmeyer [35]: The restriction of the q = 3 case to planar graphs.
Consider the subgraph in Fig. 13(a), called a planarity gadget. One can check that

N

W

S

E

(a) (b)

v w

↓

v w

Fig. 13. A planarity gadget.

this subgraph has the property that every 3-colouring f satisfies f (E) = f (W) and
f (N) = f (S). Moreover, every partial assignment f to {N,S,E,W} that satisfies
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f (E) = f (W) and f (N) = f (S) can be extended to a 3-colouring of the entire
subgraph.

The gadget is used to transform a given (nonplanar) graph G as follows. Draw
G in the plane and for each edge vw replace each edge intersection by the planarity
gadget. The outer vertices of neighbouring gadgets are identified, and v is iden-
tified with W in its neighbouring gadget, see Fig. 13(b). The resulting graph is
planar, and it can be checked that it is 3-chromatic if and only if G is 3-chromatic.
Thus, that the restriction to planar instances does not make 3-colourability compu-
tationally easier. Unlike the case for non-planar graphs, this construction cannot be
generalized to larger q > 3, since the decision problem for planar graphs and every
q ≥ 4 is trivial: The answer is ‘yes’ because of the 4-colour Theorem.

Computational complexity

The field of computational complexity relates algorithmic problems from various
domains to one another in order to establish a notion of computational difficulty.
The chromatic number problem was one of the first to be analysed in this fashion.
The following reduction, essentially from the seminal paper of Karp [23], shows
that computing the chromatic number is ‘hard for the complexity class NP’ by
reducing from the NP-hard CNF-Satisfiability problem. This means that all other
problem in the class NP reduce to the chromatic number.

The input to CNF-Satisfiability is a Boolean formula consisting of s clauses
C1,C2, . . . ,Cs . Each clause Cj consists of a disjunction Cj = (l j1 ∨ l j2 ∨ · · · ∨ l jk )
of literals. Every literal is a variable x1, x2, . . . , xr or its negation x1, x2, . . . , xr .
The problem is to find an assignment of the variables to true and false that makes
all clauses true.

Reduction K (Satisfiability using chromatic number). Given an instance C1,C2,

. . . ,Cs of CNF-Satisfiability over the variables x1, x2, . . . , xr , constructs a graph G
on 3r + s + 1 vertices such that G can be coloured with r + 1 colours if and only
the instance is satisfiable.

The graph G contains a complete subgraph on r + 1 vertices {0,1, . . . ,r }. In
any colouring, these vertices receive different colours, say f (i) = i. The intuition
is that the colour 0 represents ‘false,’ while the other colours represent ‘true.’ For
each variable xi (1 ≤ i ≤ r) the graph contains two adjacent ‘literal’ vertices vi
and vi , both adjacent to all ‘true colour’ vertices {1, . . . ,r } except i. Thus, one
of the two vertices vi ,vi must be assigned the ‘true’ colour i, the other must be
coloured 0. The construction is completed with ‘clause’ vertices w j , one for each
clause Cj (1 ≤ j ≤ s). Let xi1 , xi2 , . . . , xik be the variables appearing (positive or
negated) in Cj . Then w j is adjacent to {0,1, . . . ,r } \ {i1, i2, . . . , ik }. This ensures
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that only the (‘true’) colours {i1, . . . , ik } are available at w j . Furthermore, if xi
appears positive in Cj , then w j is adjacent to vi ; if xi appears negated in Cj , then
w j is adjacent to vi . Figure 14 shows the reduction for a small instance consisting
of just the clause C1 = (x1 ∨ x2 ∨ x3) and a valid colouring corresponding to the
assignment x1 = x3 = true, x2 = false; the edges of the clique on {0,1,2,3} are not
shown. Thus, the only colours available to w j are those chosen by its literals.

0
0

11

22

33

1 v1

0 v1

0 v2

2 v2

3 v3

0 v3

2
w1

Fig. 14. A 4-colouring instance corresponding to C1 = (x1 ∨ x2 ∨ x3).

Edge colouring A mapping f : E → {1,2, . . . ,q} is an edge colouring of G if
and only if it is a vertex-colouring of the line graph L(G) of G. In particular, every
vertex-colouring algorithm can be used as an edge colouring algorithm by run-
ning it on L(G). For instance, Algorithm I computes the chromatic index in time
2m poly(n), which is the fastest currently known algorithm. Similarly, Algorithm
G finds a (2∆ − 1)-edge colouring, but this is worse than Algorithm V. In fact,
since ∆ ≤ χ′(G) ≤ ∆ + 1, Algorithm V determines the chromatic index within
an additive error of 1. However, deciding which of the two candidate values for
χ′(G) is correct is an NP-hard problem, as shown by Holyer [19] for χ′(G) = 3
and Leven and Galil [29] for χ′(G) > 3.

Approximating the chromatic number Algorithm V shows that the chromatic
index can be very well approximated. In contrast, approximating the chromatic
number is much harder. In particular, it is NP-hard to 4-colour a 3-chromatic graph
[17]. This rules out an approximate vertex colouring algorithm with a performance
guarantee good as Algorithm V, but is far from explaining why the considerable
firepower behind (say) Algorithm R results only in a colouring of size nc for 3-
chromatic graphs. The best currently known exponent is c = 0.204 [24].

For sufficiently large, fixed q, it is NP-hard to find an exp(Ω(q1/3))-colouring
for a q-colourable graph. If q is not fixed, even stronger hardness results are
known. We saw in Section 6 that the polynomial-time computable function ~χ(G)
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is a lower bound on χ(G), even though the gap can sometimes be large, say
χ(G) ≥ n0.157 ~χ(G) for some graphs. Can we guarantee a corresponding upper
bound for ~χ? If not, maybe there is some other polynomial-time computable func-
tion g so that we can guarantee, for example, g(G) ≤ χ(G) ≤ n0.999g(G)? The
answer turns out to be ‘no’ under standard complexity-theoretic assumptions: For
every ε > 0, it is NP-hard to approximate χ(G) within a factor n1−ε , as shown by
Zuckerman [41].

Counting The counting problem is solved by evaluating P(G,q). Conversely,
because the chromatic polynomial has degree n, it can be interpolated using La-
grangian interpolation from the values of the counting problem at q = 0,1, . . . ,n.
Moreover, χ(G) ≥ q if and only if P(G,q) > 0, so it is NP-hard to count the
number of q-colourings simply because the decision problem is known to be hard.
In fact, the counting problem is hard for Valiant’s counting class #P.

On the other hand, an important result in counting complexity [21] relates the
estimation of the size of a finite set to the problem of uniformly sampling from it.
In particular, a uniform sampler such as Algorithm M serves as a ‘fully polynomial
randomized approximation scheme’ (FPRAS) for the number of colours. Thus,
provided that q > 4∆, Algorithm M can be used to compute a value g(G) such that
(1 − ε )g(G) ≤ P(G,q) ≤ (1 + ε )g(G) with high probability in time polynomial
in n and 1/ε for any ε > 0. Much better bounds on q are known, see the survey
of Frieze and Vigoda [13]. Without some bound on q, such an FPRAS is unlikely
to exist because, setting ε = 1

2 , it would constitute a randomized algorithm for
the decision problem and would therefore imply that all of NP can be solved in
randomized polynomial time.

Conclusion Together, the algorithms and reductions presented in this survey give
a picture of the computational aspects of graph colouring. For instance, 2-colouring
admits a polynomial time algorithm, while 3-colouring does not. In the planar case,
4-colouring is trivial, but 3-colouring is not. An almost optimal edge-colouring can
be found in polynomial time, but vertex-colouring is very difficult to solve, even
approximately. If q is sufficiently large compared to ∆(G) then the set of colourings
can be sampled and approximately counted, but not counted exactly. Finally, even
the computationally hard colouring problems admit techniques that are much better
than our initial Algorithm X.

None of these insights are obvious from the definition of graph colouring, so
the algorithmic perspective on chromatic graph theory has proved to be a fertile
source of questions with interesting answers.
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