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ABSTRACT

Today, a plethora of parallel execution platforms are available. One platform
in particular is the gpGru — a massively parallel architecture designed for
exploiting data parallelism. However, gpGrus are notoriously difficult to pro-
gram due to the way data is accessed and processed, and many interconnected
factors affect the performance. This makes it an exceptionally challenging
task to write correct and high-performing applications for gpgpus.

This thesis project aims to address this problem by investigating how
ForSyDe models — a software engineering methodology where applications
are modeled at a very high level of abstraction — can be synthesized into cupa
C code for execution on NvIDIA cuDA-enabled graphics cards. The report
proposes a software synthesis process which discovers one type of potential
data parallelism in a model and generates either pure C or cupa C code. A
prototype of the software synthesis component has also been implemented
and tested on models derived from two applications — a Mandelbrot generator
and an industrial-scale image processor. The synthesized cupa code produced
in the tests was shown to be both correct and efficient, provided there was
enough computation complexity in the processes to amortize the overhead
cost of using the gpgpu.

Keywords: software synthesis, high abstraction-level models, ForSyDe, crcru,
cupa, C
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CHAPTER

INTRODUCTION

This chapter presents the motivation behind this thesis, its objectives and the
strategic approach to the thesis problem. The chapter closes with an overview of
the document structure of the report.

1.1 MOTIVATION

N THE LAST few decades we have seen tremendous advances in microelec-

tronics. Faster and denser chips allow more complex systems which puts an
ever-increasing demand on system designers to consider low-level details and
complexity management. Moreover, with chips reaching their clock rate limit,
multicore platforms are favored to a greater extent than ever. Future systems
are thus required to be parallelized in order to make efficient use of the under-
lying architecture. This entails intricate communication and synchronization
schemes that further exacerbates the design process. Consequently, this also
leads to more effort and resources being put into testing and verification to
ensure that systems are correct and efficient. At the same time aggressive
market competition forces companies to limit the development cycles for their
products.

Recognizing these challenges, Stephen Edwards et al. and Kurt Keutzer
et al. advocate modeling systems on as high an abstraction level as possible in
order to contain the complexities of system design [18, 31]. This is achieved,
they argue, by applying system modeling methodologies which promote
component reuse, verification and early error detection, which in turn yields
rapid development. However, this also creates an abstraction gap between



2 CHAPTER 1. INTRODUCTION

the model level and the implementation level. One such methodology which
attempts to bridge this gap is ForSyDe.

ForSyDe is a work in progress actively under development by the Depart-
ment of Electronic Systems (es) of the School of 1cT at the Royal Institute
of Technology (ktH), Sweden. A research project conducted by the same
department explores the capabilities of modeling and synthesizing highly
parallel systems in high abstraction models such as ForSyDe. As part of its
research, an attempt is made to model and synthesize a streaming application
for image processing. The application is based on an existing full-scale indus-
trial program provided by XaarJet aB, a company specializing in piezoelectric
drop-on-demand ink-jet printing. Due to the nature of its functionality and
high throughput demand, the application seems to be a good candidate for
parallel execution on a throughput-oriented architecture, e.g. a gpu. It was
thus decided to extend ForSyDe with a software synthesis component which
enables system models to be synthesized into parallel C code optimized for
execution on such platforms. The development of that component is the
assignment of this thesis project.

1.2 OBJECTIVES

The main goal of this thesis is to investigate and realize the implementation
of a software synthesis component for ForSyDe supporting optimized code
generation targeting gpgpus. The component shall use a file containing the
graph representation of the system model as input. As it would be beyond
the scope of a M.Sc. thesis to consider a fully generic tool, the component
only needs to support a subset of the standard operations from the image
processing domain and ForSyDe constructs, and only needs to target Gpgprus
as execution platform. Thus the objectives are defined as follows:

1. Perform a literature study, targeting the following areas:

ForSyDe (also includes a brief study of Haskell and SystemC),

synchronous data flow models,

GPGPU architecture,

parallel programming using cupa,

memory topologies,

compilation techniques,

software synthesis with related work, and

optimization techniques for mapping GpGpU resources.

2. Determine the minimum set of language constructs and operations
that must be supported by the software synthesis component in order
to successfully synthesize the application model.

3. Identify main challenges of implementing the software synthesis com-
ponent (e.g. how to identify computational workload eligible for par-
allelizing, how to distribute such workload on the cpu for efficient
execution, etc.).

[ I R R R R IR
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4. Prioritize and select which challenges in objective 3 are to be addressed
in this thesis.

5. Develop solutions to selected challenges.

6. Implement a prototype of the software synthesis component which
accepts a file containing the application model represented in an ex-
tended Graphmr format as input, and outputs cupa-annotated C code
optimized for execution on a GrGPruU.

1.3 STRATEGY

The thesis project is divided into four phases:

1. Literature study, wherein necessary knowledge of related work and
background information is gathered. This also includes identifying
the main challenges hinted at in objective 3.

2. Development and implementation of a software synthesis component
prototype which accepts a Graphmr representation of a ForSyDe model
but outputs sequential C code only. This phase obviously also involves
the conceiving of necessary methods and algorithms for tackling the
challenges identified in phase 1.

3. Iteratively enhance the prototype to enable parallel execution by anno-
tating the generated code with cupa directives as well as optimizing
the output for execution on GpGpuUs.

4. Verify the functionality of the software synthesis component through
experimentation.

Phase 2 and 3 are separated in order to manage complexity and always have a
component which works to some extent.

1.4 DOCUMENT OVERVIEW

The report is divided into four parts: Part I covers the problem background
and necessary information in order to understand the problem; Part II de-
scribes the development and implementation of the software synthesis com-
ponent; Part III closes the report by discussing future work and conclusions;
and Part IV contains the appendices.

1.4.1 Partl

The aim of the first part is to provide the reader with enough knowledge in
order to understand the problem itself and the challenges related in address-
ing it. Chapter 2 briefly introduces the reader to ForSyDe and how it is used
to model applications. Chapter 3 describes alternative two domain-specific
programming languages — Obsidian and Skepu, both with backends for code
synthesis — and how they compare with ForSyDe. Chapter 4 explains gpGprus
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and briefly covers how to write and optimize data parallel programs for exe-
cution on cupa-enabled graphics cards. Chapter 5 describes the format used
for representing the ForSyDe models in text files, and Chapter 6 lists the chal-
lenges in developing and implementing the software synthesis component. If
the reader is already well-versed with these topics, the chapters in question
can safely be skimmed or skipped entirely.

1.4.2 Part1l

The second part concerns the design and implementation of the software
synthesis component. Chapter 7 first describes the application which will
be used as base for proof-of-concept and test modeling, and continues with
analyzing how to transform this model into a cupa C program. Chapter 8
explains the applied methods and algorithms, followed by Chapter 9 which
covers the software synthesis component in detail. Chapter 10 lists the limi-
tations of the implemented component, and Chapter 11 analyzes the results
and performance of the synthesized cupa C code.

1.4.3 Part III

The third part closes the report. Chapter 12 suggests future work by recom-
mending non-implemented features and research topics. A summary of the
report is given in Chapter 13, where the work is checked against the thesis
goals. The chapter also suggests a set of new process types that should be
added to the ForSyDe framework to improve and simplify modeling and
synthesis of data parallel applications targeting GpGrus.

1.4.4 Part1V

The fourth and last part contains the appendices. Appendix A holds the
documentation of the software synthesis component and how to use it. It also
describes how to maintain the component, in case future developers wish to
improve upon it or add new features.
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CHAPTER

ForSYDE

This chapter introduces ForSyDe to the uninitiated. It briefly explains the method-
ology and how to write simple models. Note, however, that this chapter only covers
ForSyDe in just-enough detail for the reader to understand the application model;
for a thorough documentation of ForSyDe, please consult [40—42]. The chapter
also contains code examples based on Haskell and SystemC, and only some of the
language constructs will be explained. For introductory texts, the reader is advised
to consult [36] and [6], respectively; covering any of these languages in detail is
out of scope for this report.

The text in this chapter is primarily based on the material found in [40—43].

2.1 A BRIEF INTRODUCTION

EUTZER ET AL. STATES that in order “to be effective, a design methodology
Kthat addresses complex systems must start at high levels of abstraction”
[31]. One such methodology is ForSyDe (Formal System Design), which pri-
marily targets modeling of systems-on-a-chip and embedded systems.

The main objective of ForSyDe is “to move design refinement from the
implementation into the functional domain” [42]. It does this by capturing the
system functionality in a specification model. The specification model operates
at a high level of abstraction which hides implementation-oriented details,
thus allowing the designer to focus on what the system is supposed to do
rather than how. Moreover, as the model is founded on formal methods, its
correctness can be verified using automated tools. This reduces both cost
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and development time as errors detected in the post-release phase can be
10 to 25 times more expensive to correct than had they been revealed in the
construction phase [34].

Once designed and tested, the specification model can be refined into
an implementation model using semantic-preserving transformations and design
decisions (the refinement process is out of scope for this thesis and will thus not
be covered in any detail). Semantic-preserving means that the transformations
do not change the meaning of the model. Hence, if applied on a specification
model which is proven to be correct, then the resultant implementation model
will also be correct, thus allowing systems to be “correct by construction”
[18]. The refinement process stops when the model contains enough details
to be synthesized into (or mapped onto) an implementation. The synthesis
process may produce either hardware (e.g. vuDL code) or software (e.g. C
code), depending on the backend support.

ForSyDe was originally implemented as a library in functional program-
ming language Haskell. This was due to several reasons:

m  The natural match between functional languages and data flow appli-

cations advocates using a functional programming language as base
for a domain-specific language (psL) [45].

m  Haskell is based on formal semantics and is purely functional (i.e. func-
tions produce no side-effects) and thus yields completely deterministic
models [18]. This in turns aids verification.

m  Haskell uses a lazy evaluation mechanism which allows convenient
structures such as infinite lists to model signals [41].

m  Haskell supports powerful language constructs such as pattern match-
ing and higher-order functions [43].

m  Haskell has a strong type system with automatic inference, which
provides great flexibility while at the same time facilitating verification
as bugs related to type matching errors can be detected at compile
time [41, 43].

During the course of this thesis project, ForSyDe was also being imple-
mented in SystemC. However, as its GraphmL backend was not yet operational,
the Graphwmt files used in this work were either generated from Haskell
ForSyDe models and its process function arguments were manually translated
into C, or the files were hand-written from scratch. Nonetheless, the goal is to
have a completely automated process from model design to code synthesis.

2.2 SYSTEM MODELING

As previously stated, the ForSyDe methodology provides two kinds of system
models: a specification model and an implementation model. For this work
we are only interested in the former as the input to the software synthesis
component will be derived from the specification model. This model will
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from hereon be referred to as the ForSyDe model or system model.

A system model consists mainly of signals and processes. For the purpose
of this thesis, we simplify the definition of a signal s"and view it as an infinite
sequence of values:

?: <”l/1,'l/2,...>

A sequence may also contain absent values denoted by L. The ability to signify
absent values is needed in order to model systems where some parts operate
at slower data rate speeds than others. Hence we may have signals such as

§= <V1, 1,0, L, 1,V3,Vy,... )
i i i : : : - -
A process P is defined as a functional mapping of m input signals iy,..., i,

. . — —
into n output signals 07,..., 0,:
- e — —
P(iy,..., i) =(01,..., 0,)
A model is thus a hierarchical network of processes which communicate via
signals. Figure 2.1 shows an example of a process network PN, which itself is
also a process and can be expressed as:

PN(i)=(0)
where .
(50 %2)=R(7)
0 =Pz(i1: 53)
s3=P5(s>,)

ForSyDe provides several models of computation [18, 31], but in this work
we will only consider the synchronous model of computation for which there
is currently most extensive support. In this model, systems are assumed
to operate under the perfect synchrony hypothesis [5] where processes are
“infinitely fast” [42] and signal propagation takes zero time. Output values
from a process, and even for the entire model, are thus produced immediately
after (or as) the input values arrive. This eliminates the possibility of race

4 N\

. 5 .
i Py P, 0
?2\ Py j@

N\ J
PN

FIGURE 2.1 — Example of a ForSyDe model, which can be viewed as a network
of concurrent processes. Source: adapted from [41].
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conditions (i.e. that one value will arrive before another), which reduces the
number of possible states and leads to deterministic system models.

Processes are created using process constructors provided by the ForSyDe
library. Each constructor is a higher-order function which takes combinatorial
functions (i.e. functions with no internal state) and input signals as parameters
and produces a process as output. A combinatorial function is also called a
process’ function argument. This “cleanly separates” [42] communication and
computation and leads to coherent and well-defined models. In addition, all
process constructors have structural hardware and software semantics which
allow the implementation model to be synthesized into corresponding hard-
ware or software. Figure 2.2 illustrates some of the process constructors and
processes available in the ForSyDe library. The entity names (e.g. mapSY,
zipWithSY) have been chosen to reflect their similarity with the Haskell library
functions (map, zipWith). There is also a generic zipWithNSY which can take
an arbitrary number of input signals. Hence, a zipWithNSY process with one
input signal is equivalent to a mapSY process, and a zipWithNSY process with
two input signals is equivalent to a zipWithSY process.

Lastly, the “sy” suffix indicates that the entities are synchronous. As we
will only be dealing with the synchronous computational model, we assume
from hereon that all processes and process constructors are synchronous
unless otherwise stated.

i
— G
- N zipWithSY (f) ——
LN mapSY (f) LN 7
2
(a) Applies a combinatorial function (b) Applies a combinatorial function
f on every value on the input signal. f on every pair of values (one from

each input signal).

e 7
- 01 L -
j —> . ] 0
LN unzipxSY (f) | - .| zipxSY(f) ——
> —
On 171
(c) Splits an input signal of array val- (d) Merges an array of single-value
ues into an array of single-value out- input signals into an output signal of
put signals. array values.

FiGure 2.2 — ForSyDe process constructors mapSY, zipWithSY, unzipxSY, and
zipxSY. Source: adapted from [42].
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2.3 MODELING IN HASKELL

Declaring a ForSyDe process is akin to declaring a function in Haskell. List-
ing 2.1 shows the declaration of an adder process which adds the values of two
input signals. Using the Haskell function compositor operator (. ), the output
of one process can easily be connected to the input of another. For example,
in Listing 2.2) three processes f, ¢ and h are connected one after another
(also see Figure 2.3). The process order may appear reversed compared to the
declaration, but this is just due to the declaration using nested function calls
(think of it as h(g(f())), where f will be evaluated first). Also, the network is
declared using point free style where the right-most function parameter may
be omitted, thus allowing a more compact style of coding.

2.3.1  Shallow and deep models

ForSyDe provides two methods of modeling: shallow models and deep models
[1]. The modeling concepts are the same for both, but differ in terms of ease-
of-use and backend support. The shallow model permits usage of all Haskell
language constructs but can only be simulated. Shallow models are therefore
only suitable for rapid prototyping and experimentation. Deep models are
more difficult to write as they are more restrictive in terms of language
constructs; the programmer is limited to a small set of data types, and is
not allowed to use infinite lists, pattern matching or combinatorial recursion.

adderSY :: (Num a) => a -> a -> a
adderSY inl1 in2 = zipWithSY (+) in1 in2

LisTING 2.1 — Declaration of a Haskell ForSyDe adder process.

programSY :: a -> a
programSY = mapSY h . mapSY g . mapSY f

Listing 2.2 — Connecting several Haskell ForSyDe processes with combinato-
rial functions f, gand f.

T(f 8 h1
L

FiGure 2.3 — Illustration of the program modeled in Listing 2.2.

ol

programSY



12 CHAPTER 2. FORSYDE

However, the advantage of deep models is that they can be synthesized to
vHDL or Graphmt code (or whatever backend is available).

2.4 MODELING IN SYSTEMC

The theory behind application modeling in the SystemC flavor of ForSyDe is
the same as in Haskell. The main difference is, obviously, the language con-
structs — Haskell is a purely functional language while SystemC is a template
library implemented in C++, an object-oriented language. In SystemC, process
constructors are implemented as classes, and processes are created by deriv-
ing the appropriate process constructor class and providing implementations
for the pure virtual functions. Once declared, the processes are instantiated
as objects which are used to create modules, which in turn are attached to
form a network using channels. Channels are the communication elements of
SystemC and can be either something as simple as a wire or as complex as a
FIFO queue or a bus. Listing 2.3 shows an equivalent implementation of the
adder process which was declared in Haskell in Listing 2.1.

#include "forsyde.h"

using namespace ForSyDe::SY;

class adderSY : public comb2<int, int, int> {
public:
adderSY(sc_module_name _name)
comb2<int, int, int>(_name) {}
protected:
int _func(int a, int b) {
return a + b;
}
s

LisTiNG 2.3 — Declaration of a SystemC equivalent of the Haskell adder
process.



CHAPTER

ALTERNATIVE DSLs

This chapter introduces the reader to two alternative domain-specific programming
languages — Obsidian and SkepU — designed either completely or partly for writing
applications which targets execution on GPGPUs. Both languages provide backends
for synthesizing their models into optimized CUDA C code and the goal of this
chapter is to analyze how they compare with ForSyDe and whether the same
synthesis solutions and methods can be applied for the ForSyDe component.

3.1 OBSIDIAN

The text in this section is primarily based on the material found in [46, 47].

BSIDIAN Is A domain-specific programming language for programming

data parallel applications for execution on GpGrus (specifically cupa
platforms). It is a work in progress developed by the Department of Computer
Science and Engineering at Chalmers University of Technology and Goteborg
University with the goal to offer a tool which “encourages experimentation”
by “rais[ing] the level of abstraction of Gpu programming” [46].

3.1.1 Implementation and usage

Implemented as an embedded language in Haskell’, Obsidian consists of:
m  a collection of scalar type operations;
m arrays together with library functions to operate on these arrays; and
m  acollection of operations called combinators which construct the crcpu
kernels.

1Obsidian has been implemented twice, the first approach based on monads and the second
based on arrows.

13
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An array is of type Arr a and may consists of types IntE, FloatE or BoolE.
All arrays are of finite length and an Obsidian programmer uses these arrays
to appropriately package the computation data.

Once the data arrays have been formed, the programmer uses the array
library functions to construct the functionality of the gpGpu kernels. In a
sense, these functions are the program building blocks; most functions are
simply Obsidian versions of the Haskell library functions (e.g. map, foldr,
zip, etc.) with the restriction that they only operate on Obsidian arrays.
Listing 3.1 shows an example of where fmap is used to declare a function
which increments each value in an array. Obsidian also provides a set of
permutation functions, motivated by their usefulness in sorting networks —
rev, riffle, unriffle, to name a few.

From the array functions, the programmer can construct the cpGpu kernels
using combinators. In Obsidian, a kernel is represented by a data typea :->
b which can be interpreted as a program which inputs a and outputs b. Two
of the most common combinators are pure and sync, defined as

pure :: (a -> b) a :-> b
and
sync :: Flatten a => Arr a :-> Arr a

respectively (Flatten declares types that can be stored in Gpu memory). The
pure combinator turns one or more array functions into a kernel, and the sync
combinator is used between kernels to signify that the data is to be intermedi-
ately stored in shared memory (will be explained in Section 4.2.5). The sync
also includes synchronization barriers when necessary (see Figure 3.1). For
some combinators the performance of the generated cupa code is “satisfac-
tory” [47] and comparable with hand-optimized code, while for others the
performance is not yet sufficient.

Using this approach, the programmer does not need to be concerned with
figuring out the intricate array indexing schemes that naturally appear when
programming GPGpPuUs. Instead, these are taken care of by Obsidian as part of
the synthesis process. Obsidian also manages usage of the shared memory;
the developer simply has to say when and where to use it.

incr :: Arr a -> Arr a
incr = fmap (+1)

ListinG 3.1 — Declaration of an Obsidian function incr.
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o}

Pure —> Pure Pure

Kernel

Ficure 3.1 — Illustration of a gpgpu kernel modeled in Obsidian using pure
and sync combinators. Source: adapted from [46].

3.1.2 Similarities with ForSyDe

Due to Obsidian and ForSyDe both being implemented as embedded lan-
guages in Haskell, the way of writing (or modeling) programs in each are
congruent in nature, especially since both languages prohibit global state and
thus requires that all functions are purely functional.

Another similarity is Obsidian’s array library functions which are akin
to ForSyDe’s process constructors: they take higher functions as arguments;
can be daisy-chained using the Haskell function composition function (. );
and have software semantics which allows them to be synthesized into an
implementation.

3.1.3 Differences from ForSyDe

A key difference between Obsidian and ForSyDe is their intention. Obsidian
focuses on absolving the developer from having to deal with low-level details
such as kernel invocation, thread count and block size decisions, array index-
ing and facilitates the process of combining kernels into larger kernels. To
wit, Obsidian is a language for simplifying pGpu programming by taking
care of the mechanical work while leaving the creative bits to the programmer.
In contrast, ForSyDe concentrates purely on functionality and correctness
and abstracts away the underlying execution platform entirely. This means
that implementation-specific details such as synchronization barriers are not
provided by the programmer in the ForSyDe model, but must be analyzed
and inserted appropriately by the cupa synthesis backend.

Since Obsidian targets a specific architecture, it provides matching in-
put/output data structures and library functions and forces the developer
to adapt his algorithms to fit them. ForSyDe, being more general, simply
does not have the luxury to customize its library for a particular platform.
Hence a program written in Obsidian is probably more accessible for cupa
optimizations and synthesis than a ForSyDe model will be. For instance, as
input and output to its kernel-generating combinators Obsidian uses arrays,
which coincide with gpgpus’ method of computation. ForSyDe, on the other
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hand, propagates data through signals which may have to be aggregated in
order to provide enough data for execution on GrGrus to be worthwhile.
Another important difference is that Obsidian requires that the program-
mer explicitly inserts sync calls on appropriate places to trigger usage of
shared memory. Hence Obsidian relies on the programmer to write programs
which correctly exploits this feature. ForSyDe does not provide any such
constructs, which leaves the responsibility of finding out when, where and
how to capitalize on the shared memory to the software synthesis component.

3.2 SKEPU

The text in this section is primarily based on the material found in [15-17, 19, 20].

Skepu is a skeleton programming framework targeting heterogeneous plat-
forms under development by the Department of Computer and Information
Science at Linkoping University. Like Obsidian, Skepu raises the abstraction
level by facilitating the process of writing data parallel applications. However,
it is general enough to support other architectures than cuba and strives to
make its program portable without having to rewrite the code. At the point
of writing, Skepu provides code generating backends for multi-cpu cupa,
Openct, Openmp and pure sequential cpu execution, and is even capable
of utilizing several backends simultaneously. In addition, Skepu uses a lazy
memory copying technique where the actual copying of data from Gpu mem-
ory to cpu memory is only done when the data is needed, thereby avoiding
unnecessary memory transfers.

3.2.1 Implementation and usage

Skeru is implemented as a C++ template library using Starpu as underlying
run-time system (see [17] for information about Starpu). It applies a notion
called skeleton programming, where the application building blocks consist of
predefined skeletons which take higher order functions as input®. Currently,
Skepu provides six skeletons — Map, MapReduce, MapOverlap, MapArray, and
Scan — which each provides software semantics for the synthesis backends
and thus enables portability (although functionality not provided through
any combination of skeletons must be still be manually rewritten).

The skeletons are represented as singleton objects. When a skeleton is
instantiated, an execution environment containing all available Openctr and
cupa devices is created. Since all skeleton objects are singletons, this environ-
ment is shared between all instances within the program. All skeleton object

2The astute reader will note the similarity between how ForSyDe and Skepu models their
programs; in fact, the ForSyDe process constructors were even called skeletons in earlier work
(see Sander1999). However, since higher order functions are not supported in C++ as in
Haskell, function pointers are used instead.
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also overload the operator() construct, enabling them to behave like functions
which, when invoked, selects an appropriate implementation-specific member
function to execute. Which member function is selected depends on device
availability and problem size together with the current execution plan (more
on this later). The skeletons also perform architecture-specific optimizations,
such as utilization of shared memory on cupa platforms.

Before a skeleton can be created, a user function must be provided. A pro-
grammer declares a user function through preprocessor macros which expand
the function into a struct containing the backend-specific implementations.
Listing 3.2 shows the declaration and creation of a Reduce skeleton which
implements the a+b function, with the corresponding macro expansion shown
in Listing 3.3.

So far Skepu also provides two generic data containers — Vector and
Matrix, based on std::vector — on which the skeletons operate. Apart
from holding the data itself, the data containers also implicitly manage data
transfers between the cpu and gpu memory and keep track of multiple copies
residing in different memories. As previously noted, Skeru applies a lazy
memory copying technique which delays the actual copying as long as possible.
This is beneficial when applying a series of Gpu computations on the same
container as data will not be transferred back to the cpu memory between the
invocations.

The execution time of a skeleton is affected by three factors:

m the problem size,

m the selected backend, and

m the parameter set for that backend.

In general, the cpu and Openmp backends run faster on smaller problems
compared to Openct and cupa, and vice versa. Furthermore, performance of

BINARY_FUNC(plus, double, a, b,
return a+b;

)

/| Create a reduction skeleton from the plus operator
skepu::Reduce<plus> globalSum(new plus);

skepu::Vector<double> input (100, 10);

/| Apply sum reduction on the input vector
double sum = globalSum(input);

[l Apply sum reduction explicitly using the CPU backend
double sum = globalSum.CPU(input);

LisTiNG 3.2 — Skeleton creation in Skepu. Source: [20].
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BINARY_FUNC(plus, double, a, b,
return a+b;

)
/| expands to

struct plus
{

skepu::FuncType funcType;

std::string func_CL;

std::string funcName_CL;

std::string datatype_CL;

plus()

{
funcType = skepu::BINARY;
funcName_CL .append("plus");
funcName_CL .append("double");
datatype_CL.append(
"double.plus(double.a,.double.b)\n"
"{\n"
"oooreturn.a+b;\n"
"\n");

}

double CPU(double a, double b)

{
return a+b;

}

__device_

{
return a+b;

}

double CU(double a, double b)

}

LisTING 3.3 — Macro expansion of user function in Skepu. Source: [20].

a particular backend can be affected by several parameters, such as number of
threads for the Openmp backend and grid and thread block sizes for the cupa
backend. In Skepu, these parameters are called the parameter set. Hence it
would be beneficial if the backend and parameter set was selected at runtime.
This is addressed by execution plans.

An execution plan maps a problem size for a particular skeleton to the
backend and parameter set which offers the most optimal performance. Since
all skeletons operate on vectors and matrices, the problem size is defined
as the size of the input vector or matrix. The execution plans can be set
manually, computed offline using machine learning and training data, or
tuned at runtime.

To conclude, by applying these skeletons and data containers, the program-
mer is insulated from any architecture implementation details. Furthermore,
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backend-specific optimizations are taken care of by the skeleton and mem-
ory transfers between the cpu and Gpus are efficiently managed by the data
containers provided by Skeru.

3.2.2 Similarities with ForSyDe

Like Obsidian and ForSyDe, Skeru wraps user-defined functionality in soft-
ware semantic entities which can be understood and synthesized by the back-
ends. Moreover, both Skeru and ForSyDe targets no specific backend and
therefore must have an application modeling methodology which is general
enough to implement models on all architectures. This means that the syn-
thesis backends cannot rely on the programmer to declare operations such as
synchronization barriers in the application models as this backend dependent.
This allows kernel translation and optimization techniques implemented in
Skepu to be analyzed and adapted to the ForSyDe software synthesis compo-
nent.

3.2.3 Differences from ForSyDe

While Skepu was not developed targeting a specific execution platform, it does
aspire to alleviate data parallelization and thus uses, like Obsidian, vectors
and matrices as data containers. These containers match this purpose and
thus need not be altered or adapted for the synthesis process. In ForSyDe,
data may have to be aggregated across signals in order to provide enough
data parallelism for offloading computations on the grGrus to be productive.
Hence, the data containers have to be adapted to the signal data type and the
pattern of the data parallelism being exploited in the model, which can only
be done during synthesis. In that sense, ForSyDe operates at a higher level of
abstraction compared to Skepu as it does not restrict the system designer to
use a limited set of data containers. However, this means that the software
synthesis component has to construct appropriate data containers which can
be used efficienctly by the Gpu kernels.

An important difference between Skepu and ForSyDe, even when consid-
ering the SystemC flavor, is that ForSyDe prohibits any global state (this is
for good measure as that is essential for determinism). Skepu, on the other
hand, capitalizes on this by making all skeleton objects into singletons. This
allows the same execution environment to be shared among the skeletons,
and encourages the programmer to write applications under this assumption.
The same approach cannot be made directly for ForSyDe models. (It may be
possible, however, that this could be applied in the synthesis process as the
component will generate C code, although the given ForSyDe models may not
exactly promote this approach.)






CHAPTER

GPGPUs AND GENERAL
ProGraMMING WITH CUDA

This chapter explains the background of GPGPUs, their architecture and a short
introduction in how to write parallel C programs for NVIDIA’s CUDA platform.
Understanding the underlying hardware covered in Section 4.2 is essential for
comprehending the code optimizations explained in Section 4.4, and consequently
also for appreciating many of the challenges in implementing a software synthe-
sis component which generates efficient CUDA C code. The chapter closes with
comparing CUDA to two alternative GPGPU programming frameworks.

4.1 BACKGROUND

ROPELLED MAINLY BY the gaming industry, graphics cards filled the demand
P)f processing units needed for rendering complex, high-resolution 3p scenes
at real-time [35]. Starting with the first Gpu —-nvIDIA’s GeForce 256 released in
1999 — the number of transistors has increased by three magnitudes in little
over 10 years, reaching 1.03 single-precision teraflops in 2009 [14, 32].

Recognizing this massive computing power, pioneering developers at-
tempted to utilize the gpus for tasks other than processing graphics [27, 35,
44]. This required, however, that the programmers expressed non-graphical
computations through the graphics ap1 and shader languages, which needless
to say was less than ideal. In addition, floating-point arithmetic was dubious,
if even supported at all.

Greater demands were made on the Gpu to provide more general vertex
and pixel-fragment processors, which increased design complexity, area and

21
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costs. In addition to increased inefficiencies due to poor load-balancing
between the two, gpu manufacturers opted that the processors be unified
into a single entity [33]. Furthermore, the vector processors were switched
to scalar thread processors, and instruction support for integer and 1EEE 754
floating-point arithmetic, load/store memory access with byte addressing, and
synchronization barriers was added. This allowed the Gpu to be programmed
using general-purpose languages such as C, and the advent of the gpgpru
was marked in 2006 when Nvip1a released GeForce 8800 — the first unified
graphics and computing architecture [35].

4.2 ARCHITECTURE

The most widely used technique for rendering images is to use geometric
primitives, such as triangles, which are then processed through several stages.
At each stage, individual triangles, triangle corners or pixels are operated
upon independently [23]. As there easily can be millions of pixels for a single
frame, graphical computations is thus inherently a data parallel process and
consequently yields a fundamentally different architecture compared to a cpu
(see Figure 4.1) [23, 32, 35, 44]. As they have been optimized for completely
different tasks, the gpu is a complement to the cpu rather than a replacement.

4.2.1  Many simple processing units

The cpu has been designed under the assumption that its programs will be
largely sequential in nature, leading to a latency-oriented architecture. Tradi-
tional scalar microprocessors are optimized for single-thread execution by
dedicating a considerable amount of chip area to sophisticated control logic
such as out-of-order execution and speculative branch prediction in order to
minimize delay.

ALU || ALU -
Control ]
logic
ALU || ALU 1
Cache ]
| Memory | | Memory |
(a) cru (b) gru

FIGURE 4.1 — An architectural comparison between a cpu and a Gpu — two
fundamentally different design philosophies. The cpu has been optimized for
execution of sequential code, while the gpu has been optimized for execution
of data parallel code. Source: adapted from [32].
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The Gpu, on the other hand, has been designed assuming that there will
be plenty of parallelism and is therefore a throughput-oriented architecture.
Such platforms strive to include as many computing cores as possible by
avoiding advanced control logic, meaning that the cores typically execute
their instructions in order, although in a pipelined fashion.

4.2.2 Hardware multithreading

Processing an image element such as a triangle or pixel generally involves
launching a thread which executes a small program — usually called a shader
[23], and in cupa it is called a kernel function (these are explained in Sec-
tion 4.3.2). In order to keep the processing cores busy while waiting for long
latency operations such as memory accesses, GpGrUs apply hardware multi-
threading to make thread switches with extremely fine granularity, often at
instruction-level [23, 32, 35]. A modern GpGru therefore manages tens of
thousands of concurrently existing threads with minimal overhead. For exam-
ple, a Tesla c2o50 executing a simple kernel function which increments one
individual value per thread will spawn, execute and retire about 13 billion
threads per second [23].

4.2.3 SIMD execution

Parallel processors often employ some form of single-instruction, multiple-data
(SIMD) execution to improve throughput, either by issuing the same instruction
to multiple cores or by using a vector processor which execute a single in-
struction over a vector of data. Such execution is attractive as more resources
can be devoted to functional units rather than control logic.

Since each image rendering stage involves executing the same shader on
multiple image elements, it is clear that siMp execution will also benefit gpus,
and this is often applied. As we will see shortly in Section 4.2.6, NvIDIA’S cUDA
platform applies a slightly different form of simMp execution.

4.2.4 Calculation is cheap

In gpGgpus, computation generally costs much less than memory transfers,
in particular transfers to and from off-chip praM memory. A computation
operation, such as an add, only takes a few cycles, while a memory read
from pram can take several hundred cycles. Moreover, much more energy is
required to transfer data between the cores and prRam memory than required
to operate a functional unit. For instance, in a 45 nm circuit, a 64-bit addition
unit consumes about 1 pJ (picojoule), and a 64-bit floating point multiply-add
unit requires about 100 pJ, while reading a 64-bit data value from external
DRAM absorbs 2,000 pJ [23].

It may therefore be favored to recompute values such as sinx and cosx
instead of looking up precomputed values in a table residing in memory,
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especially when there are functional units on board dedicated for computing
fast approximations.

4.2.5 The NVIDIA CUDA platform

The text in this section is primarily based on the material found in [23, 24, 27, 32, 33, 35].

A typical cupa Gparu is illustrated in Figure 4.2. Roughly speaking, the gpgpu
can be divided into clusters, each consisting of a pair of streaming multiproces-
sors (sm). Each sm in turn contains a large register file, an instruction cache,
an instruction fetch/dispatch unit, a constant cache, a shared memory, and a
number of streaming processors and special-function units, all connected to
high bandwidth Gpprg praM interfaces. Every cuba-enabled graphics card
also fulfills a certain compute capability which describes the Gru’s features
and configuration [12, 32]. The versioning starts at 1.0, and each incremental
version (minor increments are 1.1, 1.2, 1.3, and major increments are 2.x, 3.X,
4.x) is a super set of the previous.

Each sm contains 8 streaming processors (sp), also known as cUDA cores.
The cupa cores are the primary thread-processing units of the grpu: they
perform fundamental operations such as integer and floating-point arithmetic,
and each is a fully pipelined in-order core, optimized to balance delay and
area. The total number of sms, and hence also the number of sps, is device-
dependent. At the point of writing, the most sophisticated model — Tesla
C2070 — sports 448 CcUDA cores [14].

The sm also contains 2 special-function units (sfu) which compute fast
approximations to certain functions such as sinx, cosx, log, x and 1/+/x. The
srus are shared among the sps and can be used to offload the sps when accuracy
can be sacrified for increased throughput.

The register file holds the thread contexts (i.e. program counter, local
variables, stack pointers, etc). Its size is dependent on the Gpu’s compute
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FIGURE 4.2 — Overview of NvIDIA’s cuDa architecture. Sources: adapted from
[24, 33, 35].
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capability, varying between 8 kB, 16 kB and 32 kB (future version increments
will probably provide even larger register files), capable of accommodating
up to 768, 1024 and 1536 threads per sm, respectively. Each thread may also
be allocated a small portion of the pram memory for registry spilling. This
portion is called the local memory, most likely referring to its scope rather
than its locality, and the pram memory as a whole is called the global memory.

The shared memory is a small (16 to 48 kB [12]), low-latency, multibanked
on-chip memory which allows application-controlled caching of pram data.
In many other architectures which contain similar memories this is commonly
referred to as the scratchpad memory. Rewriting the application to make use of
this memory often yields a tremendous performance gain (e.g. the throughput
of a simple matrix multiplication kernel function increased from 21.6 to 345.6
gigaflops). This will be covered again but in greater detail in Section 4.4.

The cupa Gpu also contains a set of other caches for reducing memory
latencies. The constant cache at 8 xB [12] is used for caching constant values
residing in praMm, thereby reducing memory read delays of such data. Pairs
of sms also share a texture memory between 6 and 8 kB [12] which cache
neighbored elements in 2p matrices from the pram (compare this to normal
cpu caches which are row major-oriented). This may improve performance if
the memory accesses follow such a pattern.

Newer cupa generations are also equipped with L1 and 12 caches (inter-
mediate storage facilities which minimizes the number of read and write
operations to global memory), but for simplicity these have not been drawn
out. We will even assume that they are not present as they are transparent
from the developer’s point of view — the same way as we can safely ignore
cpu caches in terms of functionality. Moreover, there has been little research
covering the performance effects of L1 and L2 caches in GpGpus, making it very
difficult to take them into account when conducting code optimizations.

4.2.6  Thread division and scheduling

In order to handle the large population of threads and to achieve scalability,
the threads are divided into a set of hierarchical groups — grids, thread blocks
and warps [23, 32, 33, 35, 44] (see Figure 4.3).

A grid constitutes all threads belonging to the same kernel invocation
(kernels will be covered in the next section). The grid is divided into thread
blocks which are arranged in either a 1p or 2p geometry, with maximum
65,535 blocks in each dimension (compute capability 2.x even supports 3-
dimensional grids). The geometry and size of the grid is configurable by the
programmer in order to match the computing problem.

A thread block contains the threads to execute, arranged in either a 1p, 2D
or 3D geometry. Similarly with grids, the thread block configuration can be
tweaked by the programmer to match the structure of the input data; this
simplifies memory data accesses. Each block is limited to 512, 512 and 64
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FIGURE 4.3 — Thread division and organization.

threads in each x, y and z dimension, respectively, but also the total number
x*y *z must not exceed 512 or 1024 threads, depending on whether the cpu
supports compute capability 1.x or 2.x [12].

The thread blocks are distributed over the sms for scheduling and execu-
tion. Each sm can handle up to 8 thread blocks and the cpu will dynamically
balance the workload across the sms. Thread blocks already allocated to an sm
are not relocated, and a thread block does not relinquish its slot until all of its
threads have finished their execution.

To efficiently manage this large population of threads with as little over-
head as possible, threads are not scheduled individually. Instead, NviDIA has
developed a variant of simp technology known as single-instruction, multiple-
threads (SIMT) execution [23, 32]. In simT, threads are bundled into warps. A
warp is a set of threads that are adjacent to each other, i.e. the threads must
be consecutive when ordered row major (see Figure 4.4). This obviously also
requires that all threads within a warp must belong to the same thread block.
A warp consists of maximum 32 threads, but may contain fewer threads (this
occurs when the thread block size is not a multiple of 32).

Thread block
(0,0) [ (1,0) [ === |(15,0)
Warp 0
(0,1) [ (1,1) [ === |(15,1)
(0,2) | (1,2) [ === |(15,2)
Warp 1
0,3) [ (1,3) [ === |(15,3)
(0,4)|(1,4) [ === |(15,4) } Warp 2

FIGURE 4.4 — Warp partitioning.
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F1GURE 4.5 — Host and device separation in cupa.

Warps eligible for execution are scheduled and executed as a whole. The
next warp to be executed can belong to any thread block currently allocated
to the sm, and there is no fairness between warps or thread blocks. The sm
executes a warp by issuing the next instruction to all its sps. Since there are
only 8 sps per sMm, the thread execution is interleaved such that the instruction
is first issued to threads o to 7 within the warp, then 8 to 15, etc.. Hence, if
the next issued instruction takes 1 cycle to execute, then executing the entire
warp will take 4 cycles. A consequence of this is that execution of warps
consisting of less than 32 threads will leave some sps to idle, thus failing to
achieve full sp core utilization. One should therefore strive to achieve a thread
blocks whose sizes are a multiple of 32 for optimal performance.

To allow threads within a warp to be executed in synchronous at all times,
execution of data-dependent branch instructions must be serialized. What
this means is that given an if-else statement whose expression has been
evaluated, the sm will first issue all instructions within the if branch, and then
all instructions within the else branch. Predicates are used to prevent threads
that did take the currently executing branch from committing their result,
and will thus effectively be stalled. Once all branches have been executed, the
threads converge to the same execution path and thus synchronous execution
of all threads is resumed. Avoiding thread divergence can therefore boost
performance.

4.3 PROGRAMMING WITH CUDA C

In order to enable applications to be run on cupa-enabled GrGrus, NvIDIA
provides an spk consisting of a set of libraries, a cupa C compiler called
nvce, and reference manuals. In principle, programming in cupa C is quite
straight-forward and often it takes only a few days effort for a skilled cupa
programmer to port appropriate C programs to cupa C . Many applications —
e.g. machine learning, database processing, bioinformatics, financial model-
ing, and medical images — have been accelerated with cupa, at times yielding
over a 100x speedup [24, 35].
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In cupa, the system consists of a host and a number of devices, the host
being the cpu and the devices the grgrus (see Figure 4.5). All cupa program
generally apply the same host-device interaction pattern:

1. allocate memory on the device,

2. copy data from host to device,

3. perform data calculations on the device,

4. copy the result back, and lastly

5. free allocated memory.

This may even be iterated multiple times within the program, using the gpu
to perform heavy data parallel computations and using the cpu for intense
sequential algorithms which are hard to parallelize. In fact, this is exactly the
key idea with cpGpus.

To show how to write cuba C programs, we will take a pure C program
which implements matrix multiplication and then proceed by porting it to
cupa C.

4.3.1  Starting with pure C

For readers who have forgotten their linear algebra, matrix multiplication
between a matrix A and matrix B is done by taking the dot product between a
row from A and a column from B (also see Figure 4.6), i.e.

Ci,j =T0Wy,; - COZB’]'

The implementation in pure C is given in Listing 4.1). It iterates over
the rows of matrix A and columns of matrix B, multiplying each pair-wise
row-column value and calculates the sum which produces the value in the
corresponding cell of matrix C. Note that the matrices are commonly stored
row major in memory, meaning that the rows are preserved and stored one
after another (see Figure 4.7).

4.3.2  Porting to CUDA C

The text in this section is primarily based on the material found in [32, 44].

Having a complete working C implemention of the matrix multiplication, we
will now port it to cupa C.

In normal circumstances, the device is not allowed access to the host
memory. To circumvent this, we first allocate memory on the device for the
matrices A, B and C:

cudaMalloc((void**) &Ma, size);
cudaMalloc((void=*) &Mb, size);
cudaMalloc((voidxx*) &Mc, size);
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void matrixMult(intx a, int* b, int* c) {
int i, j, k;
for (i = 0; i < N; ++i) {
for (j = 05 j < N; ++j) {
int sum = 0;
for (k = 0; k < N; ++k) {
sum += a[i * N + k] * b[]j
}
c[i » N+ j] = sum;
}
}

+ k o+ NJ;

LisTING 4.1 — Pure C version of matrix multiplication. Source: [32].
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FIGURE 4.6 — Matrix multiplication. Source
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: adapted from [32].
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FicUre 4.7 — Row major storing of matrices in memory. Source: adapted

from [32].
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The library function cudaMalloc is analogous with the C function malloc, but
instead of allocating memory on the system it allocates memory on the device.
Another difference is that cudaMalloc returns the pointer through a parameter
instead of return values as malloc does. This is to be able to return status
codes in case the operation should fail (for brevity we don’t check the return
values, but that should always be done in any production code; in fact, all
cupa library functions follow this convention).

The values of the matrices A and B are then copied to the global memory
located on the device:

cudaMemcpy (Ma, a, size, cudaMemcpyHostToDevice);
cudaMemcpy (Mb, b, size, cudaMemcpyHostToDevice);

This also entails that code executing on the device is only allowed to deref-
erence pointers referring to the global memory on the device, and, similarly,
code executing on the host may only dereference pointers to the host memory.
Breaking this rule leads to undefined behavior.

Once copied, we can execute the calculations. This is done through a kernel
invocation:

dim3 gridDimension(1, 1);

dim3 blockDimension(N, N);

matrixMult<<<gridDimension, blockDimension>>>
((int*) Ma, (int*) Mb, (intx) Mc);

The syntax may appear a bit bizarre at first due to the introduced angular
brackets. However, when ignoring these characters, a kernel invocation is
nothing more than a function call - the angular brackets are there to be able to
provide the grid and thread configuration of that invocation. In this example,
we have chosen that the grid consists of a single 2-dimensional thread block
of size N x N.

But before we can invoke a kernel, it first needs to be declared:

~_global__ void matrixMult(int* a, int* b, int* c¢) {
int tx = threadldx.x;
int ty = threadldx.y;

/| Calculate dot product
int k, sum = 0;
for (k = 0; k < N; ++k) {
sum += a[ty * N + k] * b[tx + k = NJ;
}

c[ty * N + tx] = sum;
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Kernel functions are declared as a C function, with a few differences. First,
its prototype must be preceded by the __global__ keyword'. This indicates
to the cupa C compiler that this C function is a kernel function. Second,
kernel functions are not allowed to make any recursive calls. This limitation
is most likely caused by limited stack space, but has been lifted in later cupa
generations.

The most significant change in matrixMult is that its two outer loops
have been removed. The kernel function will be executed by each thread
within the entire grid, and although keeping the outer loops would produce
the same result (ignoring race conditions), it would be a terrible waste of
parallelizing potential. Instead of computing all values in matrix C, we
rewrite the matrixMult to compute only a single value based on the values
of threadIdx.x and threadldx.y. These are predefined variables provided
by the cupa framework which specify a thread’s x and y coordinates within
the thread block. Having selected an appropriate thread block configuration,
we can use these x and y coordinate values to directly select a corresponding
row, of matrix A and column, of matrix B to compute value, , of matrix C,
thus performing the calculations in parallel.

Lastly, when the device has finished executing the kernel, the results needs
to copied back to the main memory and the allocated memory freed:

cudaMemcpy(c, Mc, size, cudaMemcpyDeviceToHost);

cudafFree(a);
cudaFree(b);
cudaFree(c);

Since each thread block is limited to 512 or 1024 threads in total, depend-
ing on the Gpu’s compute capability, this program can only handle matrices
up to sizes V512 x V512 or 32 x 32, respectively. This amount of data is far
too small to reach full utilization of the gpu. We should therefore rewrite the
kernel function to accommodate larger matrices by applying multiple thread
blocks. The improved version of matrixMult is given in Listing 4.2 and illus-
trated in Figure 4.8. Assuming each thread block can contain at maximum
512 threads, this version is capable of handling matrices containing up to
(\/m 65,535)2 elements (i.e. maximum grid size in each dimension with
maximum thread block size). Should larger matrices need to be processed, or
if the device runs out of global memory, the computations must be split into
several kernel invocations.

!In addition, cupa provides two more keywords - __device__ and __host__ - the former
declaring a device function which may be invoked from the kernel, and the latter declaring a
host function which may only be executed on the host. By default, all functions are declared as
host functions if no keyword is given. Functions may also be declared using both __device__
and __host__ . This triggers the compiler to generate two versions of the function, allowing it
to be run on both the host and the device.
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__global__ void matrixMult(int* a, int* b, int* c) {
int row = blockIdx.y » TILE_SIZE + threadldx.y;
int col = blockIdx.x * TILE_SIZE + threadIdx.x;

/| Calculate dot product
int k, sum = 0;
for (k = 0; k < N; ++k) {
sum += a[row * N + k] * b[col + k * NJ;

}

clrow * N + col] = sum;

LisTING 4.2 — Improved cupa version of the matrix multiplication program

which allows larger matrices. Source: [32].

- LT~ Computation area
per thread block

F1GURE 4.8 — Matrix multiplication using thread blocks.

4.4 CODE OPTIMIZATIONS

Simply porting an program to cupa C rarely results in optimal performance;
cupa code is notoriously tricky to optimize as there are many factors affecting

the performance, often with counter-intuitive results.
Ryoo et al. divides cupa optimizations into six categories [37-39]:

memory bandwidth optimizations,
dynamic instruction reduction,
increasing thread-level parallelism,
increasing intra-thread parallelism,
work distribution, and

resource balancing.

NG B~ LW N R

Each will be covered individually in the following sections.
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4.4.1  Memory bandwidth optimizations

The first category deals with optimizing memory bandwidth utilization, in
particular of global memory. This is most often the key factor which limits
speedup. To see why, let us examine the computation performance and
memory bandwidth of nvipia Tesla c2070 [14]. It provides a theoretical
single precision-floating point (sprp) peak throughput of 1.03 teraflops and
a memory bandwidth of 144 GB/sec. With one sprp value being 4 bytes, this
yields a computation-memory loading ratio of about 28 [28]. This means that
for every loaded sprp value, there need to be on average at least 28 operations
per loaded value between each global memory load or else memory bandwidth
will be saturated and threads will stall due to data starvation. Most algorithms
simply don’t exhibit such high computation-memory load ratios [28].

To reduce memory pressure, the programmer can

m cache global data in local, low-latencies memories, and

m rearrange memory access patterns to allow global read or write opera-

tions to be coalesced.

Using the shared memory, data from global memory can be cached on-chip,
thereby allowing low-latency access if these data need to be used frequently.
Revisiting the matrix multiplication example in Section 4.3, we notice that
adjacent threads access the same row data in matrix A. This can be optimized,
as shown in Listing 4.3.

Variables which are shared by multiple threads can be allocated in shared
memory by prepending __shared__ to the variable declaration. Using the
blockIdx and threadIdx variables to drive the threads, the matrix multipli-
cation algorithm now iterates over two steps: (i) load tile data from global
memory into shared memory (see Figure 4.9), and (ii) calculate partial sum.
Each step must be separated by a synchronization barrier to ensure that all
threads have finished loading their data or performed their calculations before
proceeding with the next tile. The barrier only encompasses all threads within
the same block, but that is sufficient as the shared memory is also partitioned
at thread block level. By caching the tiles in the shared memory, the number
of global memory accesses is reduced by a factor of T if there are T x T tiles
in total [32].

Since the shared memory is small — limited to 16 kB and 48 xB in compute
capabilities 1.x and 2.x, respectively — it can easily become a limiting factor. In
our example, we have selected the tiles to be 16 x 16 of 4-byte elements, which
consumes 1 KB, i.e. each thread block demands 2 kB (one tile for each matrix)
of shared memory. As each sm can manage 8 thread blocks at maximum, all
tiles exactly fit and shared memory is thus not a limiting factor in our matrix
multiplication application.

Memory operations issued by threads within the same warp performing
memory reads or writes to adjacent addresses in global memory can be coa-
lesced into a single transaction (see Figure 4.10 on page 35). In Listing 4.3 we
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__global__ void matrixMult(int* a, int* b, int* c) {
__shared__ int Da|TILE_SIZE][TILE_SIZE];
__shared__ int Db[TILE_SIZE][TILE_SIZE];

int
int
int
int

bx = blockIdx.x; int by = blocklIdx.y;
tx threadldx.x; int ty = threadldx.y;
row = by x TILE_SIZE + ty;
col = bx » TILE_SIZE + tx;

// Calculate dot product

int
for

}

i, sum = 0;
(i = 0; i <N / TILE_SIZE; ++i) {
int k, sum_tmp = 0;

/| Load tile

Da[ty][tx] = a[row = N + TILE_SIZE = i + tx];
Db[ty][tx] = b[col + (TILE_SIZE % i + ty) = NJ;
__synchthreads();

/| Calculate partial dot product

for (k = 0; k < TILE_SIZE; ++k) {
sum_tmp += Da[ty][k] * Db[k][tx];

}

sum += sum_tmp;

__synchthreads();

c[row * N + col] = sum;

LisTING 4.3 — Improved cupa version of the matrix multiplication, now
using shared memory to cache partial rows and columns of matrix A and B,
respectively Source: [32].

Tiles
J

FIGURE 4.9 — Matrix multiplication using tiles.
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FIGURE 4.10 — Coalescing on reads performed on 4-byte memory units which
are stored consecutively. Devices with compute capabilities 1.0 or 1.1 per-
form memory coalescing on 64- and 128-byte segments, while devices with
compute capabilities 1.2 and up also perform coalescing on 32-byte segments.
The examples above illustrate the capabilities of compute capabilities 1.0
and 1.1 which can only coalesce accesses which are aligned and within the
64-byte segment; devices with compute capabilities 1.2 and up are able to
coalesce all these accesses into 1 memory transaction. Source: adapted from

(32].

16 memory transactions

see that both load operations for Da and Db are already in such a pattern to
allow coalescing, hence we need not to optimize the code any further.

4.4.2  Dynamic instruction reduction

The second category concerns increasing the instruction efficiency to increase
performance. The idea is that if the same amount of work can be done using
fewer instructions, then throughput must increase. This can be achieved by
three independent methods:

m eliminating recurring subexpressions,

m  moving loop-invariant code, and

= loop unrolling.

Recurring subexpressions, i.e. calculations which appear more than once
within the code, can be removed by saving and reusing the result of the first
calculation. However, this tends to require additional registers which may
decrease the total number of threads which can reside in an sm.

Loop-invariant code is akin to multiplications found in mathematical sum-

mation formulas, i.e.
E ca; < ¢ E a;
i i

Operations unaffected by the loop itself can be moved from the body outside
the loop, thereby avoiding redundant calculations and increasing instruction
efficiency.
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Loop unrolling is an optimization technique commonly applied automat-
ically by compilers. It involves increasing the increment count used in the
loop and duplicate the operations of the body. Listing 4.4 shows the simple
cupa version of matrix multiplication where the loop in the kernel function
has been unrolled once.

While this actually increases the code size by adding extra instructions,
it trades loop overhead for computation and hence increases the instruction
efficiency. However, additional control logic may be required to handle cases
where the new step count is not a multiple of the original number of iterations.

4.4.3 Increasing thread-level parallelism

The third category aims to increase core utilization by providing enough
threads or warps to hide stalls due to long latency and blocking operations.
For instance, a synchronization barrier will stall an entire warp until all warps
of that thread block has reached the barrier. More independent warps can be
created by decreasing the size of each thread block, thereby allowing the total
number or thread blocks to increase. However, this should be done with care
as this may increase memory pressure due to lessened data sharing.
Another optimization that I feel falls into this category, but which is
not explicitly stated in [37-39], is minimizing thread divergence. Branch
conditions, which cause some threads within a warp to execute one path and
other threads a separate path, result in the execution of all threads to be
serialized for each taken path. For example, let us assume the kernel contains
an if/else statement and that half of the threads evaluate the expression
to true and the other half evaluate the expression to false. Then as the
threads reach this statement, the second half of the threads will be stalled
as the first half executes its path. When the executing half has reached the
end of its path, that half will now be stalled and the second half becomes

__global__ void matrixMult(int* a, int* b, int* c¢) {
int tx = threadIdx.x;
int ty = threadIdx.y;

/] Calculate dot product
int k, sum = 0;
for (k = 0; k < N; k += 2) {
sum += a[ty * N + k] * b[tx + k = NJ;
sum += a[ty * N + (k + 1)] = b[tx + (k + 1) * NJ;
}

c[ty * N + tx] = sum;

L1STING 4.4 — Loop unrolled cupa version of matrix multiplication.
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ready and executes the else part of the statement. Once all paths have
been executed, all threads converge to the same path and resume execution.
Hence performance can be increased by either removing the branch entirely,
or rearranging access patterns in such a way which causes entire warps to
diverge instead of individual threads within a warp. Since warps execute
independently from each other, thread stalling will be reduced. Let us look at
an example.

Listing 4.5 shows the kernel function for vector sum reduction, which
is also illustrated in Figure 4.11. While simple, it has several flaws: first, it
waste thread resources as half of them will never even execute; and second,
the algorithm causes a lot of intra-warp thread divergence. A much better
approach is listed in Listing 4.6.

~_global_ _ void sumBeduce(int* v, int* sum) {
__shared__ int partialSum[N];

int tx = threadldx.x;

/| Calculate sum reduction

int stride, sum = 0;

for (stride = 1; stride < N; stride <<= 1) {
__syncthreads();
if (tx % (2*stride) == 0) {

partialSum[tx] += partialSum[tx + stride];

}

ssum = partialSum[O0];

LisTING 4.5 — Naive approach to implementing reduceSum in cupa. Source:
[32].
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FIGURE 4.11 — Sum reduction — naive approach. Source: adapted from [32].
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__global__ void sumBReduce(int* v, int* sum) {
__shared__ int partialSum[N];

int tx = threadldx.x;

// Calculate sum reduction
int stride, sum = 0;
for (stride = N >> 1; stride > 0; stride >>= 1) {
__syncthreads();
if (tx < stride) {
partialSum[tx] += partialSum[tx + stride];

}

*sum = partialSum[0];

L1sTING 4.6 — An improved cupa implementation of reduceSum. Source: [32].
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FIGURE 4.12 — Sum reduction — improved approach. Source: adapted from
[32].

The new version exhibits a different pattern (see Figure 4.12) of summing
elements by starting with a stride half the number of elements and then
dividing it by 2 for each iteration. By doing this, if (tx < stride) will
evaluate to either true or false for all threads within the same warp (at least
as long as the stride is larger or equal to 32). This prevents thread divergence
and hence minimizes stalling which consequently increases throughput.

4.4.4 Increasing intra-thread parallelism

The fourth category involves increasing the availability of independent in-
structions within a thread. This can be divided into two subcategories:

m instruction-level parallelism, and

m  memory latency hiding.
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Instruction-level parallelism (1Lp) is primarily the domain of the instruction
scheduler of the cuba runtime system. According to Ryoo et al., it “appears
to reschedule operations to hide intra-thread stalls, but sometimes does this
to the detriment of inter-thread parallelism” [38] as rearranging instructions
may increase register usage and thereby reduce the total thread count of each
SM.

Memory latency hiding is a special case of rLp where computational in-
structions and memory operations are overlapped in order to hide these long
latencies. This optimization may be performed by the compiler but can also
be done explicitly by the programmer by applying a technique commonly
known as data prefetching.

Returning to the cupa version of matrixMult, we see that there is no overlap
between the memory operations and the computations as these are divided
by a synchronization barrier. This can be solved by prefetching the next data
elements while consuming the current data elements, as shown in Listing 4.7.

4.4.5 Work distribution

The fifth category regards work redistribution across threads and thread
blocks. Because to their nature, these optimizations are often unpredictable
due to changes in register usage. For example, the tile size can be tweaked
to optimize memory bandwidth usage; larger tiles maximizes the effects of
caching by reducing the total number of global memory accesses. However,
this also decreases scheduling flexibility since a larger percentage of threads
must be stalled at synchronization barriers.

Other techniques are to increase the amount of work per thread (e.g. in
matrix multiplication, each thread can calculate two values instead of one),
and distribute work across multiple kernel invocations due to usage of limited
sources, such as the constant cache.

4.4.6 Resource balancing

The sixth, and last, category concerns making changes in resource utilization
to shift pressure from overused resources to underused resources. For exam-
ple, registers can be proactively spilled by the programmer to global memory
in order to allow more threads per sm, thus trading decreased instruction
efficiency for higher thread-level parallelism. However, one must do this
carefully as not to affect other optimization aspects negatively.

4.5 ALTERNATIVES TO CUDA

There are a number of alternative cpgpu-programming platforms, the most
known being Khronos Group’s Open Computing Language (Openctr) — an
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__global__ void matrixMult(int* a, int* b, int* c) {
__shared__ int Da[TILE_SIZE][TILE_SIZE];
__shared__ int Db[TILE_SIZE][TILE_SIZE];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadldx.x; int ty = threadldx.y;
int row = by * TILE_SIZE + ty;
int col = bx » TILE_SIZE + tx;

/| Load first tile
int temp_a = a[row * N + tx];
int temp_b = b[col + ty * NJ;

/| Calculate dot product

int i, sum = 0;

for (i = 1; i < N / TILE_SIZE; ++i) {
int k, sum_tmp = 0;

/| Deposit tile into shared memory
Da[ty][tx] = temp_a;

Db[ty][tx] = temp_b;
__synchthreads();

/| Load next tile
Da[ty][tx] = a[row = N + TILE_SIZE = i + tx];
Db[ty][tx] b[col + (TILE_SIZE = i + ty) = NJ;

// Calculate partial dot product from current tile
for (k = 0; k < TILE_SIZE; ++k) {
sum_tmp += Da[ty][k] * data_b[k][tx];
}
sum += sum_tmp;
__synchthreads();
}

clrow * N + col] = sum;

LisTING 4.7 — Improved cupa version of the matrix multiplication, using
prefetching to load the tiles into shared memory. Sources: [32, 38].

open standard for doing general programming on heterogeneous platforms,
adopted by Intel, AMD, aT1, NvIDIA and ARM — and Microsoft’s DirectCompute.

Openct [13, 25] is very similar to cupa - it uses the same notion of kernel
functions and threads but uses a slightly different terminology and has a
higher coding overhead (i.e. requires more code to achieve the same result)
— and while cupa only runs on NvIDIA cuDA-capable graphics cards, Opencr
is supported by a range of gpu vendors. An interesting difference is that
the kernel functions are defined entirely as strings in Opencr and compiled
at runtime, whereas cupa kernels are compiled beforehand along with the
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program. This allows OpencL kernels to be optimized no matter which
platform it will execute on. However, at the time, cupa had more literature
available and a larger user group (and thus more technical support), which is
why it was decided that the software synthesis component should produce
cupa C code. Furthermore, porting a cupa program into Opencr should
essentially only involve replacing the cupa directives library calls with Openct
equivalents and adding the code necessary for invoking the kernel.

DirectCompute [11, 49] is an extension of DirectX, forcing the programmer
to write the applications as a special type of shader attached to the graphics
pipeline. This may be convenient if the program needs to be integrated with
Direct3p. However, unless the programmer is already familiar with the HLsL
shading language, DirectCompute is more difficult and less accessible to use
than cuba. Moreover, DirectCompute has lower os support as DirectX is only
available on Windows platforms.






CHAPTER

GrarPrHML

This chapter describes the GraphML standard, which is the format in which the
ForSyDe model will be represented and given as input to the software synthesis
component.

The text in this chapter is primarily based on the material found in [7, 8].

GRAPHML 1s A standardized format, developed by Ulrik Brandes et al., for
specifying graphs and graph appearances. It was initiated by the Steering
Committee of the Graph Drawing Symposium with the aim to overcome
earlier failed attempts to devise a standard to improve tool interoperability.

5.1 BRIEF INTRODUCTION TO XML

Graphwmt builds upon another standardized format — xmr. The xmL standard
allows data to be stored in a text format which can be read and understood by
humans. The xMmL elements consists of tags, attributes, and text (the data to be
stored). Text may only appear within a tag, which is written as

<tag>
data_as_text
</tag>

Surrounding whitespace is ignored and does not affect the structure of the
document; thus, the following would be equivalent to the code above:

<tag>data_as_text</tag>

43
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A tag may also contain other tags, thus allowing data to be hierarchically
ordered, e.g.

<tag>
data

<another_tag>
some other data
</another_tag>
<tag>more data</tag>
</tag>

At the top of the hierarchy, there must always be a root tag which contains all
other tags. A tag can also have one or more attributes, which are given within
the tag as

N

<tag attribute="value">
data
</tag>

For tags which contain no data, there is a short-hand notation which is written
as

<tag />

We now have sufficient background knowledge to discuss the Graphmr
format.

5.2 THE GRAPHML FORMAT

The Graphwmt format specifies

m  aset of xML tags and attributes which collectively define the structure

of a Graphmr document or file; and

m a mechanism which allows the Graphmt format to be extended with

application-specific graph data formats (will not be covered).

All Graphmt files must start with some xmL headers (these are not of
interest for our purpose and will thus be ignored in this report) followed by
the root tag <graphml>. The root tag contains the graphs specified in the file.

Graph is contained by the <graph> tag. A graphs are defined by a set of
nodes and edges. An edge defines a connection between two nodes. A Graphmr
file may contain any number of graphs, although for this work we assume
that there will be only one. A <graph> tag may contain any number of core
elements, which consist of <node>, <edge>, and <hyperedge> tags. The order
of these tags within the <graph> tag is insignificant to the structure of the
graph. A graph can even contain subgraphs by nesting a <graph> tag within
a core element.
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A node is defined using the <node> tag. Each node has a unique identifier,
given through the id attribute. A node may also have any number of ports
which are defined by including <port> tags within the <node> tag. A port
must have a name unique within the node, which is given through the name
attribute.

An edge between two nodes is defined using the <edge> tag. The source
and destination of the edge are given through the source and target at-
tributes. If the edge is to connect to a certain port, then the ports of the source
and destination are given through the sourceport and targetport attributes,
respectively.

Simply defining nodes and edges is usually not enough to fully represent
the intended graph. For instance, the nodes and edges may need to be at-
tributed with additional data, like colors and weights. Such additional data
can be added by including a <data> tag within whatever core element that
needs to be augmented. A core element can contain any number of <data>
tags. The data itself is then stored as data of the <data> (e.g., if we say that
the data to be stored is green, then this is written as <data> green </data>).
The <data> tag must also contain a id which specifies the data key. Data keys
are defined using the <key> tag, which may only appear within the <graphm1>
tag alongside the <graph> tags. It is sufficient to think of the data key as
describing what <data> tags may appear in the rest of the document.

An example of a Graphmt file is shown in Listing 5.1 which defines the
graph illustrated in Figure 5.1.

5.3 REPRESENTING FORSYDE MODELS IN GRAPHML

A ForSyDe model is really just a graph: the processes are nodes, and the
signals are edges. Thus, we can represent a ForSyDe process in Graphmt
using a <node> tags and a set of <data> tags to capture the process type and
any process constructur input parameter (e.g. function arguments and initial
delay values). A signal is simply represented by an <edge> tag, where the
source and sourceport attributes are set to the source process and output
port of that process, and the target and targetport attributes are set to the
destination process and input port of that process.

A complete example a ForSyDe model represented as a Graphwmt file is
available in Listing 9.1 on page 86.
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<?xml version="1.0" encoding="UTF-8"?7>
<graphml [XML Schema references omitted] >
<key id="desc" for="node" attr.name="node_desc"
attr.type="string">
<default></default>
</key>
<key id="weight" for="edge" attr.name="edge_weight"
attr.type="float">
<default>1.0</default>
</key>
<graph edgedefault="undirected">
<node id="n0" />
<node id="n1">
<data key="desc">Power node.</data>
<port name="south" />
<[node>
<node id="n2">
<graph edgedefault="undirected">
<node id="n2_0">
<data key="desc">This is an inner node.</data>
</node>
<node id="n2_1" />
<edge source="n2_0" target="n2_1">
<data key="weight">2.0</data>
<[edge>
</graph>
</node>

<edge source="n0" target="n1">
<data key="weight">0.5</data>
</edge>
<edge source="n1" target="n2" />
<edge source="n2" target="n0" />
<edge source="n2_1" target="n1" targetport="south">
<data key="weight">0.5</data>
</edge>
</graph>
</graphml>

LisTING 5.1 — A GraphMmt example file.

FiGure 5.1 — Illustration of the graph specified in Listing 5.1.



CHAPTER

CHALLENGES

This chapter lists the main challenges ahead of developing and implementing the
software synthesis component.

ROM THE MATERIAL covered so far in this report, we can identify a set of

main challenges in developing and implementing a prototype to the soft-
ware synthesis component. The list below contains all identified challenges,
the majority dealing with optimization problems. Each challenge has been
categorized according to their nature, and prioritized as either Criricar, HigH,
MgebiuMm, or Low.

m  Functionality challenges
o Identifying potential parallelization (CRITICAL)
How to identify which parts of the model that can be parallelized
and will benefit from it?

o Transforming ForSyDe processes into threads (CRITICAL)
How to translate the functionality in the ForSyDe processes of
the application model into cupa kernel functions which can be
executed on GpGPU?

o Awvoiding recursive function calls (CrITICAL)
In cupa, recursion is currently prohibited within a kernel function.
Will this cause problems when synthesizing ForSyDe models and
how to avoid them?

47
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Memory optimization challenges

<

Utilizing the shared memory (HigH)

How to include functionality in the synthesized code which enables
utilization of the shared memory to minimize the number of global
memory accesses?

Maximizing memory coalescing (MEDIUM)

How to optimize global memory access patterns in such a way
that simultaneous memory accesses from multiple threads can be
coalesced into a single memory issue?

Utilizing the constant memory (MEDIUM)

Data which is not modified can be cached in the constant memory,
thereby reducing the number of global memory reads. How to
identify situations when this memory can be used and how to
apply it correctly?

Optimizing shared memory accesses (Low)

Throughput to and from the shared memory is maximized if the
threads of the same warp access separate modules or banks. How to
optimize the synthesized code such that this pattern is achieved?

Utilizing the texture memory (Low)

When data is stored in a 2-dimensional matrix, texture memory
can be used to cache a cell’s neighbors whenever it is accessed
from global memory. Subsequent accesses to its neighbors will
then be much faster as the data now resides on-chip. How to
detect such memory access patterns and utilize the texture memory
accordingly?

Thread-level optimization challenges

o

Implementing prefetching (HigH)
How to apply data prefetching in order to maximize core utilization
through memory latency hiding?

Minimizing thread divergence (MEDIUM)
How to optimize the synthesized code such that threads of the
same warp follow the same control flow as much as possible?

Maximizing throughput by applying loop unrolling (MEDIUM)
Unrolling loops can increase the computational-to-branch instruc-
tion ratio and thus increase throughput. How to detect when this
will be beneficial, and how to apply it correctly?
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Removing redundant synchronization barriers (Low)

If threads operate on memory which will only be accessed by other
threads within the same warp, then these accesses need no synchro-
nization barriers. How to detect when this pattern occurs and thus
eliminate the need of synchronization barriers?

Trade lower accuracy for faster execution (Low)

By replacing operations for less accurate but faster equivalents (e.g.
swapping division operators with native_divide(x, y)), higher
instruction throughput can be achieved. How to detect when and
where this is applicable?

m  Kernel-level optimization challenges

<

Minimizing kernel invocations (Hign)
How to generate synthesized code which keeps the number of
kernel invocations to a minimum?

Utilizing more than one device (MEDIUM)

How to optimize the code to use more than one Gpu, if present?
How to balance the work load evenly if the computational power
of each Gpru is not equal?

Maximizing throughput by overlapping memory transfers and kernel
invocations (Low)

On newer devices, one or more memory read and write operations
to and from the Gpu can be executed in parallel with a computation
operation. How to optimize the synthesized code to exploit this
feature?

Eliminating redundant memory transfers between host and onboard
device (Low)
When the Gpu is integrated onto the motherboard, memory copying
between the cpu and Gru is superfluous. How to detect this and act
accordingly?

Optimizing host-to-device data transfers using page-locked memory
(Low)

Memory transfers between the cpu and the gpu can be made faster
if the transactions are made over page-locked (or pinned) mem-
ory. How to detect when this is applicable, and how to apply it
correctly?

As time is always a limiting factor, the main work of this thesis was
dedicated to addressing all CriticaL-level challenges and as many of the
Hica-level priority challenges as possible.
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CHAPTER

APPLICATION MODEL
ANALYSIS

This chapter investigates how a ForSyDe model can be transformed into CUDA
C code, concentrating on the image processing application model. It also covers
some optimizations that can be performed on the model in order to improve the
performance of the generated code. The idea is to only present the general theories
in this chapter and postpone the intricate details to Chapter 8.

7.1 APPLICATION DESCRIPTION

o GuIDE THE development of the software synthesis component, a partic-
Tular ForSyDe model was used as proof-of-concept. This model was based
on a reliability analysis program used in a printing system which imprints
circuits onto paper. In order to verify the print, the system is equipped with a
line scan camera which takes images of the ink drops at a very high frame rate.
From these images, the application produces a Boolean matrix which indicates
whether a drop was present or not in the corresponding cell. The output data
can then be compared with an expected Boolean matrix, any discrepancies
thus indicating a nozzle fault. From hereon, we refer to this program as the
line scan application.

7.1.1  ForSyDe model

The ForSyDe model for the line scan application is illustrated in Figure 7.1. It
was designed by my supervisor Christian Menne as part of his PhD project.
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ol

Figure 7.1 — ForSyDe model of the line scan application.

When image data is fed to the application, it is first run through a series of
sequential processes which transform the data in order to simplify the paral-
lelization process. The image data is then split and distributed to multiple
parallel processes which analyze the data and determine whether an ink drop
is present or not. Once all parallel processes have finished, the result data is
aggregated and run through a last transformation process before being output.
The precise functionality of the processes themselves will not be covered as
not to disclose any industry secrets.

In order to avoid potential confusion, the line scan application model will
be denoted as LS M when referred.

7.2 MODELS SUITABLE FOR SYNTHESIS TO CUDA C

As explained in Chapter 4, gpGpus are throughput-oriented platforms de-
signed for executing applications exhibiting massive data parallelism. Its
threads execute the same kernel program but compute over separate data. A
comparison of different model candidates is illustrated in Figure 7.2, from
which we deduce that application model LS M should indeed be a good can-
didate for cupba C synthesis. Inherently sequential or task parallel application
models are assumed to lack enough data for execution on GpGprus to be bene-
ficial, and thus should be synthesized for other execution platforms such as
CPUS.

Data parallel applications can be modeled in ForSyDe at two levels:

m inter-process (between several processes), and

m intra-process (within a single process).
We will look at each in turn in the subsequent sections.

7.2.1  Inter-process data parallelism

Using the process constructors unzipxSY, mapSY and zipxSY", inter-process
data parallelism can be expressed in ForSyDe models by

1The names of these particular process constructors may be different in SystemC but the
principle is the same as in Haskell.
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[ S S
(c) Sequential model.

(a) Inter-process data parallel model.

(d) Task parallel model.

o)

Bad candidates

(b) Intra-process data parallel model.

Good candidates

Ficure 7.2 — Comparison between good and poor candidates of ForSyDe
models in terms of suitability for executing the synthesized code on GrGrus.

1. splitting an array input signal into an array of signals through a un-
zipxSY process,
passing each signal through a mapSY process, and
3. merging back all signals into a single array signal via a zipxSY process.
Let us call this method of expressing data parallelism the split-map-merge
pattern. Listing 7.1 shows an example where the method is applied, which
creates the process network illustrated in (a) of Figure 7.2. This is the approach
applied in application model LS M. It should be noted that even though the
mapxSY process constructor was used in the line scan model, the Graphmt
backend expanded each such instance into multiple mapSY processes (this
will have repercussions that we will see later).

inc :: (Num a) => a -> a
inc x = x + 1
programSY :: Signal (Vector a) -> Signal (Vector a)

programSY v = zipxSY
mapV (mapSY inc)
unzipxSY v

ListiNG 7.1 — Example of a ForSyDe model exhibiting inter-process data
parallelism. The mapV (mapSY inc) construct could also be replaced by
mapxSY inc; both are equivalent.
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Models which makes extensive use of mapSY processes may contain a
great amount of potential data parallelism to exploit. Moreover, using this
approach, there is no data sharing between any two mapSY processes and
thus requires no synchronization barriers which can potentially inhibit perfor-
mance. Remember also that a mapSY process is equivalent to a ZipWithNSY
process with one input signal.

7.2.2  Intra-process data parallelism

An extension of Haskell, called Data Parallel Haskell (ppH) [9, 29, 30], enables
data parallelism by providing a set of arrays, or vectors, and functions which
operate on those constructs. More than just signaling to the compiler that
“these parts can be executed in parallel”, ppH is also capable of handling
nested data parallelism, i.e. where the data set consists of vectors of vectors
of variable lengths.

A parallel vector in ppH is expressed as

[: type :]

The functions are often parallel siblings of those operating on regular lists
and are thus named accordingly:

mapP :: (a ->b) -> [:a:]-> [:b:]

zipWithP :: (a -> b -> c¢) -> [:a:] -> [:b:] -> [:c:]
sumP :: Num a => [:a:] -> a

filterP :: (a -> Bool) -> [:a:] -> [:a:]

etc.

Using these constructs, a intra-process equivalent of Listing 7.1 is given in
Listing 7.2.

Intra-process data parallelism will not be considered in this work, al-
though ppH is, in theory, supported in the shallow version of ForSyDe Haskell.
However, it is not supported in the deep version and certainly not in ForSyDe
SystemC. A further discussion will be done in the next section.

inc :: (Num a) => [:a:] -> [:a:]
inc = mapP (\x -> x + 1)
programSY :: Signal [:a:] -> Signal [:a:]

programSY v = mapSY inc v

ListiNnGg 7.2 — Example of a ForSyDe model exhibiting intra-process data
parallelism.
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7.3 DISCOVERING AND EXPLOITING DATA PARALLELISM

The problem of discovering and exploiting potential data parallelism within
a model can be approached in several ways:

1. Let the software synthesis component figure out where and when poten-
tial data parallelism can be exploited in the model and always execute
those parts on a gpGpu.

2. Same as in 1 but only execute parts on a Gpgpu when there is sufficient
data for such execution to be beneficial (and leave this decision to the
component).

3. Let the model developer figure out where and when potential data
parallelism can be exploited in the model and always execute those
parts on a GPGPU.

4. Same as in 3 but only execute parts on a GpGpU when there is sufficient
data for such execution to be beneficial (and leave this decision to the
component).

Much research has been conducted in finding efficient methods for automated
parallelization, the latest involving transformations that translate the con-
cerning code into a polyhedral, also called a polytope. Paul Feautrier describes
one such process in [21]. The polyhedral model can be analyzed using mathe-
matical methods to perform automatic partitioning of computation data and
space allocation for frequently accessed elements onto fast on-chip memories.
Muthu Manikandan Baskaran et al. propose such an algorithm in [4], along
with a method for estimating when such allocations are beneficial.

We will apply approach 1 to discover inter-process data parallelism in
ForSyDe models. This can be done by scanning the model for unzipxSY and
zipxSY processes, checking that a unzipxSY-zipxSY pair forms a contained
data flow, and that all processes in between are created using the mapSY
process constructor. We will call such regions data parallel sections, and an
algorithm for finding such sections is given in Section 8.1.

Deciding whether to execute the data parallel regions on a GpGpU or some
other execution platform, however, is very difficult as it requires sophisti-
cated static analysis of the combinatorial functions. Hence, approach 2 was
abandoned in this thesis project.

Intra-process data parallelism is not considered in this thesis for several
reasons:

1. it is not supported in either deep version of ForSyDe Haskell or

ForSyDe SystemC;

2. such parallelism allows the possibility of nested data parallelism, which
is much more difficult to exploit compared to flat structures [9]; and

3. intra-process data parallelism can often be rewritten to inter-process
data parallelism.

Thus, to keep the work effort within reasonable boundaries, the scope of
this thesis has been reduced to only analyze the split-map-merge pattern
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of expressing data parallelism and then always execute such regions on the
GPGPU.

7-4 TRANSFORMING FORSYDE MODELS TO CUDA C

A reasonable approach on transforming a ForSyDe model to cuba C code is to
retain the notion of processes and trigger them according to a schedule which
preserves the semantics of the model. For processes which have a function
argument, the combinatorial functions can simple be invoked, passing the
input signal values via the function parameters, and writing the result to
the output signal. For processes which do not have function arguments, the
values only need to be propagated from one signal to another.

7.4.1 Mapping process function arguments to C functions

Whatever the format the model is represented in, it must be possible to extract
the process type and whatever parameters, such as function arguments, it
may have. Once retrieved, they can be analyzed and translated into corre-
sponding C functions which can be invoked by the scheduler. In this case, the
representation is a Graphwmt file based on ForSyDe SystemC. As SystemC is
implemented in C++, the function arguments can be copied directly.

There are, however, some discrepancies between C and C++ which hinders
this method from being applicable in all general cases. For instance, C++
provides additional language constructs such as bool, new and delete which
are not available in C . Hence, either these constructs are automatically
recognized and converted into appropriate C equivalents by the component,
or they are simply forbidden. In this work, we will use the latter and leave it
to the programmer to ensure that the C++ functions used in the models are
also syntactically and semantically correct in C.

To be understood by the software synthesis component, the function
argument must also adhere to a few rules. A function must always accept its
input data through the first parameter and return its produced value using
either the return clause, or through the final parameter, but not both. The
latter is necessary when the function produces an array as result since C
functions can only return a single value®. Furthermore, when the input data
is an array, the input parameter must be declared as const to prevent the
function from accidentally modifying the input data and causing incorrect
model behavior.

Data parallel processes can be mapped using the same principle but re-
quire more work as they will be executed on the pgpu. This entails wrapping

2 Another solution is to let the function allocate a new array and return its address as value,
but that could potentially lead to memory leaks. Moreover, the C++-provided new clause is
not available in C.
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the functions into a cupa kernel, configuring the grid and thread block di-
mensions as well as managing memory transfers between the host and the
device. This will be discussed in greater detail in Section 8.6.

7.4.2  Scheduling processes

In the synchronous ForSyDe model we assume that processes are “infinitely
fast” [42], an assumption which no longer applies once it has been synthesized
into C . However, the generated code must still yield the result as if the perfect
synchronous hypothesis was still in effect. This requires that the processes be
scheduled and executed in an order that produces the correct output. There
can be more than one correct schedule, except for purely sequential models
where there is only one schedule which is easy to find (simply follow the chain
of processes through the signals using depth-first search3). The problem is
finding a schedule for models exhibiting task or data parallelism, various
approaches were considered, and as one method lead to another, we will cover
each in the order they were evaluated.

The first method was based intuitively on data flow analysis. It introduces
the notion of execution paths and relies on those to find the schedule. Let us
call this method sem-Ep (Schedule Finding Method using Execution Paths).

We begin with a few definitions.

DeriNITION 7.1 — The set of input and output signals of a process P is denoted
by in(P) and out(P), respectively.

DEFINITION 7.2 — An execution path is an ordered set denoted as €;, where k €
IN; and is unique for each separate execution path within a model, consisting
of processes and other execution paths. For all execution paths it holds that
an element «; € €, where 1 <i < |eg|, can only be executed after all preceding
elements a;, where 1 < j <i, have been executed.
An element a belongs to ey if:
m o isa process P; and iN(P;) = out(P,), where P, is another process and
P, € e; or
m «a is a process which receives all of its input signals from a set of
processes Py,..., P,, where P, € €, and €,, € €; or
®m o is an execution path caused by diverging output signals from a
process P, where P € €.

3There are two common ways of doing search in a graph: breadth-first search (Brs) and
depth-first search (prs) [10]. Breadth-first search means that all neighbors of the current node
are visited first before proceeding. It can be thought of as traversing the graph in a circular
fashion, and is usually implemented using a r1ro queue from which the next node to visit is
popped from the head and its neighbors pushed to the back. Depth-first search works in the
exact opposite and traverses down a path as far as possible, like shooting an arrow across the
graph, and then backtracks to the next branch until there are no more nodes to visit. It is
usually implemented using recursion.
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€1 €1 €1

7 P, P, Py 3 €1 ={P, P, Ps}

-

(a) Sequential model.

€ €2
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\ Py / €3 = {P4}
€3

(b) Task parallel model.

FiGUrE 7.3 — Execution paths in ForSyDe models.

To illustrate the notion of execution paths, we turn to an example. Fig-
ure 7.3 shows the execution paths for a sequential and a task parallel model.
In the sequential model we see clearly that the processes P;, P, and P; all
belong to the same execution path (e;). For the task parallel model, things
become a bit more difficult. From P, the execution path €; diverges into two
separate execution paths €, (containing processes P, and P;) and €3 (contain-
ing only P;). Since €, and €3 both belong to €;, then P; must also belong to
the same execution path as P;.

The idea is that, if the execution paths can be found and ordered to form a
single set E, then a schedule can be found by iterating over all elements in E
and do the following for each element « € E:

m If a is a process, add it to the schedule.

m If a is an execution path, iterate over all its elements and apply the

same method.
The problem, however, is finding the execution paths. Furthermore, the execu-
tion paths need to be ordered together with the processes to form an ordered
set where one element is not allowed to be executed unless all processes or
execution paths prior to it in the set have been executed. Thus, building
this set E is really nothing but finding a schedule and only pushes the same
problem to another domain. Hence new methods were sought.

Realizing that attempting to find an execution order between processes
from the model is just as difficult as finding a schedule, such ambitions were
discarded entirely. However, since finding a schedule for a sequential model
is so simple using DFs, could the strategy not be augmented to accommodate
more complex models?

Indeed, it turns out that it can. By following the chain of processes from
an input signal to an output signal, we first build a schedule containing all
processes but with multiple invocations, and then prune away any duplicates
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FIGURE 7.4 — An example of how sem-Fps can be used to find a process
schedule for ForSyDe models. Thick black arrows indicate paths taken
during the current search from an input to an output signal. Grey arrows

SCHEDULE
P P, Py Py P5 Ps

starting from the end of the schedule (a formal proof will not be given in this
report). We call this method sem-¥ps (Schedule Finding Method using Forward
Process Search) and an example of how it works is illustrated in Figure 7.4.
This method is much more elegant than sem-Ep; the notion of execution
paths is gone entirely and it relies on a node visiting method which is easy
to implement. However, its simplicity has a price. Whenever a process
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has multiple output signals, the method must visits all following processes,
potentially making numerous revisits (hence the need to prune the schedule
afterwards). If the following part is shaped like a completely connected tree
with 7 nodes, then the method will make n? visits. Thus, its time and space
complexity# is O(mn?), where m is the number of input signals to the network
and #n is the number of processes. Furthermore, if the model contains cycles,
also known as feedback loops, then an implementation of this algorithm will
never terminate, which is completely unacceptable as such loops may appear
in ForSyDe models. This method also does not work for models which have
no inputs.

Fortunately, we can do better. First we avoid revisiting process nodes by
maintaining a set of visited processes. This minimizes the number of visited
processes, reduces the size of the intermediate schedule, and addresses the
termination problem. However, this also raises a problem when a process
requires more than one input. As all its inputs must have been produced
before that process can be executed, we cannot add that process to the process
until all preceding processes have been scheduled. This means that using
the simple prs can no longer be applied directly. One feasible solution is to
backtrack along each input signal, but that seems unnecessarily complicated.
A better approach is to reverse the search, i.e. to start at the output signals
and visit the processes in a backwards fashion. Then, whenever a process
requires multiple inputs, we can recursively call the method to produce partial
schedules and then concatenate the schedules once all processes along those
input signals have been visited. We call this method srm-Bps (Schedule Finding
Method using Backward Process Search) and this is the method used in the
component for scheduling the processes. A simplified version is illustrated
in Figure 7.5 using the same example model as in Figure 7.4, and a detailed
description of sem-BPs is given in Section 8.5.1.

7.4.3 Scheduling data parallel processes

Since data parallel processes are not executed individually on the gpgru,
certain changes to the model may be required in order to be manageable by the
process scheduler. As covered in Section 7.2.1, inter-process data parallelism
consists of three constructs: unzipxSY, mapSY, and zipxSY processes. On a
GPGPU, these are actually executed in tandem, and hence need to be merged
into a single process through a technique which we will call data parallel

4Algorithms are analyzed in terms of complexity [10], most often worst case complexity
which is expressed using big O notation and written as O(«). Big O notation basically states
that the worst case execution time of an algorithm for a given input is proportional to the
expression . For example, O(n2), where n is the size of the input, indicates that the worst
case run time is proportional to the square of the input size. There is also best case complexity,
expressed using big Omega notation and written as Q(«a), and average case complexity, expressed
using big Theta notation and written as ©(a). Throughout this report, it is assumed that we are
always talking about worst case unless specified differently.
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FiGure 7.5 — A simplified example of how sem-Bps can be used to find a
process schedule for ForSyDe models. Thick black arrows indicate paths
taken during the current search from an output to an input signal. Grey
arrows indicate paths which lead to the current search.

section fusing (see Figure 7.6; note that is different from process coalescing
which will be covered in Section 7.5.1). Let us denote this new process type
parallelMapSY, which entails the functionality of all three process types that
it replaces. The algorithm for this method is described in Section 8.3.
However, this cannot be done for data parallel sections which consists
of more than one segment. A segment is a column of processes within a
data parallel section (e.g., the model in Figure 7.1 on page 54 has three such
segments). Thus, prior to fusing the data parallel section, we must either:

1. inject a zipxSY followed by a unzipxSY between each data parallel
segment (this is known as data parallel segment splitting and is covered
in Section 8.2); or

2. merge the segments into a single segment through process coalescing.

Once performed, the data parallel sections can be treated like any other
process by the scheduler.

Thus, assuming we have a vector signal, a data parallel section can be

expressed in two ways, either through:

1. anetwork of unzipxSY, mapSY, and zipxSY processes and interconnect-
ing signals; or

2. aparallelMapSY process.
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FiGure 7.6 — Data parallel section fusing.

Although the former requires that a separate mapSY be declared for every ele-
ment in the vector, it is easy to express in Haskell via the entityNamemapxSY
process constructor which is based on Haskell’s mapV function. However, that
functionality disappears as the system model transitions from the Haskell
domain to the GraphmL domain, forcing all data parallel mapSY processes to
be declared explicitly. This becomes impractical when the input vector grows
large (remember that a GpGpu usually requires several thousands of threads to
achieve full utilization). This problem could be solved if the mapxSY process
was retained in the Graphmut file, which would absolve the need to introduce
a new process constructor.

7.4.4 Mapping signals to appropriate data containers

Since we are only considering the synchronous — the most restrictive — com-
putational model of ForSyDe, processes are only allowed to consume and
produce one token at a time. This enables signals to be represented using
single-value data containers such as simple C variables. However, the exact na-
ture of how these data containers are implemented is highly dependent on the
functionality of the scheduler. We therefore defer the discussion about signals-
to-intermediate storage until Chapter 8, where the scheduler is described in
detail.

7.4.5 Managing multiple port connections

In ForSyDe, values produced by a process P can be used as input to multiple
other processes. When generating the Graphwmt files for such models, there
will be multiple connections to the out port of process P. Operating on such
models is more difficult than models where every port is only allowed to be
connected to a single other port.

To break such multiple port connections, we introduce a new process type
called copySY which copies the value of its input signal to all of its output
signals. Models exhibiting multiple port connections can then be modified by
inserting a new copySY for each multiple connection point (see Figure 7.7).
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FiGure 7.7 — Breaking multiple port connections by inserting an intermediate
copySY process.
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Although this simplifies model representation and processing, it also
introduces additional signal propagation which will decrease performance if
not dealt with in the later stages of the software synthesis process.

75 MODEL-LEVEL OPTIMIZATIONS

In a ForSyDe model, each process usually embodies a single functionality.
This encourages modularity and component reuse. However, this is not
optimal from a cupa implementation and performance perspective as it may
lead to excessive memory transfers and kernel invocations. Hence, it may be
necessary to make semantic-preserving modifications to the model to improve
the performance of the synthesized code.

7.5.1  Process coalescing

In Section 4.4.1, we discussed the limitations of global memory bandwidth
and how it is essential to perform as many calculations as possible on each
data loaded from global memory. As signals between processes imply trans-
fer of data, we would like to minimize the number of signals in the model
since that reduces the number of memory operations. In inter-process data
parallel sections of the model, we can reduce the number of intermediate
signals by merging processes together. This is called process coalescing and is
illustrated in Figure 7.8. While the technique may appear to be simple, its
implementation can be quite complex and all details are thus deferred until
Section 8.4.

We begin with a definition, and then use that definition to formalize the
optimization into a theorem.

DerinIiTION 7.3 — The combinatorial function of a process P is denoted by
FUNC(P), and B denotes concatenation of one function to another (i.e. f(x)®

g(x) is equivalent to g(f(x))).
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Ficure 7.8 — Process coalescing.

THEOREM 7.1 — If out(P;) = IN(P,) holds for two processes P; and P,, and
neither is nor contains a delay process5, then P; and P, can be replaced by a
new process P, , where IN(P} ) = IN(P} ), out(P, ) = out(P;) and Func(P; ) =
FUNC(P) ) B runc(P,). After coalescing, the signals between P; and P, can be
removed.

Proof. The condition out(P;) = IN(P,) simply states that all input signals of
process P, must be exactly the same as the output signals of P;. If this holds,
then we know that the output of P; is not directed to any other process but
P,, and P, receives no input from any other process but P;. This requires,
however, that the output from P, is directly based on the input to P;, which is
assured if there are no delay elements in between P; and P,. Thus it is safe to
coalesce these two without breaking the semantics of the model. O

By combining the functionality of several subsequent processes into a
single process, the number of kernel invocations needed to perform the calcu-
lations is minimized. This also increases the computation-memory load ratio
as more computations are executed for each data read from and written to the
global memory. Hence, process coalescing seems to be a promising method
for increasing performance of the cupa C code synthesized from data parallel
ForSyDe models.

5Such processes can be created using the process constructor delaySY;, which delays a
signal by k events.



CHAPTER

METHODS AND ALGORITHMS

This chapter covers all methods and algorithms applied in the implementation of
the software synthesis component. The functionality of each algorithm is described
in detail and its time and space complexity is also analyzed when applicable. Many
of the techniques have already been briefly covered in Chapter 7 to illustrate the
general approach while deferring the technicalities to this chapter.

8.1 FINDING DATA PARALLEL SECTIONS

HE FIRST STEP to exploiting inter-process data parallelism within a model
’I;s to find where the data parallel sections are. One method for doing this
is given in Listing 8.1. Although it explicitly relies on mapSY processes, the
method can also be applied on models which use one-input ZipWithNSY
processes by first converting these into mapSY processes.

First, the algorithm computes a list of contained sections in the model. A
section is denoted by a start and end process and is contained if all signals
emerging from the start process converges at the end process, and vice versa.
The contained sections are found by first doing a pes over all processes in the
model, starting from the model outputs. To fix the termination problem when
the model contains cycles, a set of visited processes is maintained. When
an unvisited process of type zipxSY is found, the method attempts to find
the nearest unzipxSY process along the reversed data flow direction. If such
a process is found, the next step is to check if the data flow between these
two points is contained (i.e. denotes a contained section). A method for
checking data flow containment between two processes is given in Listing 8.2
on page 69.

67
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function FINDDPSecTIONS(M)
returns data parallel sections within M
inputs: M, a ForSyDe model

sections «— FINDCONTAINEDSECTIONS(M)
for each section in sections do
if not 1sSectioNDP(section) then remove section from sections

function FINDCONTAINEDSECTIONS(M)
returns list of contained sections within M
inputs: M, a ForSyDe model

sections « empty list
visited < empty set
for each output port port in M do
schedule « schedule + FINDCONTAINEDSECTIONS(process of port, visited)
return schedule

function FinDCoNTAINEDSECTIONS(P, visited)
returns list of contained sections found when starting the search from process P
inputs: P, a process starting point
visited, set of visited processes

sections «— empty list
if P ¢ visited then
visited « visited U P
if P is of type zipxSY then
start_point < FINDNEARESTUNZIPXSY (P)
if start_point was found then
if the data flow is contained between start_point and P then
sections < sections + {start_point, P} +
FINDCONTAINEDSECTIONS (endpoint, visited)
else goto continue_search
else return sections
continue_search:
for each connected out port port in P do
sections < sections + FINDCONTAINEDSECTIONS(process of port, visited)
return sections

function 1sSectionDP(S)
returns true if the section S is data parallel
inputs: S, a contained section

chains «< all chains of processes between start and end point of section
if not all chains in chains are of equal length then return false
if not chains consists of only mapSY processes then return false
for each segment in section do
if not all processes in segment have identical function arguments) then
return false
return true

Listing 8.1 — Algorithm for finding data parallel sections. The rest of the
implementation continues in Listing 8.2.




8.1. FINDING DATA PARALLEL SECTIONS 69

function FINDNEARESTUNZIPXSY (begin)
returns nearest unzipxSY process from a given process point
inputs: begin, a process search starting point

if begin is a unzipxSY then
return begin
else
for each in port port in begin do
if port is connected then
unzipxsy < FINDNEARESTUNZIPXSY (process of other end of port)
if unzipxsy was found then
return unzipxsy
return indication that no such process was found

function CueckDataFrow(start, end, direction)
returns true if all data flows begin or end at the start or end points
inputs: start, a process starting point
end, a process end point
direction, data flow direction to check

if start = end then return true
if direction = forward then
for each out port port of start do
if not CueckDATAFLow(process of port, end, forward) then
return false
else
for each in port port in end do
if not CueckDataFrow(start, process of port, backward) then
return false
return true

ListinG 8.2 — Algorithms for finding the nearest unzipxSY process and for
checking data flow containment.

Once all contained sections have been found, the algorithm runs some
checks on the process chains within each section (a process chain is the chain
of processes between the unzipxSY and zipxSY processes). If all process
chains are of equal length, consists of only processes of type mapSY, and each
segment applies the same combinatorial function, then the section is a data
parallel section. If not, then the section is removed from the list.

In most circumstances the algorithm will only visit each process in a model
once in its search for data parallel sections. This takes O(n) time, where 7 is
the number of processes within the model. Checking data flow containment
requires visiting each process within the section twice — once in the forward
check and once in the backward check — thus also taking O(n) time (except
that n is now the number of processes within the section and not the entire
model). The same applies for for checking if a contained section is also a data
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parallel section. The last significant factor to consider is the time complexity
for checking whether a process exists in the visited set. Fortunately, such sets
can be implemented using hash tables. A hash table is a vector or array of lists
where the index is calculated using a hash function. Using the element as input
data, the hash function computes a seemingly random yet deterministic value,
which is not necessarily unique for every input data. This value is used as an
index in the table, and the corresponding list is then traversed. Although it
is theoretically possible to reach time complexity O(n) in worst case, using a
large enough table and good hash functions will effectively bring this down
to O(1) [10]. Hence, the time complexity for the entire algorithm appears to
be linear (i.e. O(n)). However, if the model consists of a complete tree of
unzipxSY and zipxSY processes, then the entire remaining part of the network
may be visited for every process. This would bring the time complexity to
O(n?), but such networks are hopefully very unusual.

8.2 SPLITTING DATA PARALLEL SEGMENTS

In Section 7.4.3, we talked about why the segments in a data parallel sec-
tion may need to be separated by injecting a zipxSY and unzipxSY process.
Although the procedure for doing this is simple, the algorithm is given in
Listing 8.3 for completeness.

First, it finds the data parallel sections within the model. For each section
which has process chains longer than 1 unit, the method then:

1. traverses over each intersection between two process segments,

2. creates a new zipxSY and unzipxSY process,

3. connects the output of the zipxSY process to the input of the unzipxSY,

function SpLiTDPSEGMENTS(M)
returns modified model
inputs: M, a ForSyDe model

sections « FINDDPSecTIONS(M)
for each section where its chains are longer than 1 in sections do
chains « convert section into vector of vector of processes
for segment < 1 to size of chains[0] - 1 do
zip < new zipxSY process
unzip < new unzipxSY process
connect output of zip to input of zip
for i < 0 to size of chains - 1 do
connect output of chains[i][segment - 1] to input at index i of zip
connect input of chains[i][segment] to output at index i of unzip

LisTinG 8.3 — Algorithm for splitting data parallel segments.



83 FUSING UNZIPXSY, MAPSY, AND ZIPXSY PROCESSES 71

4. connects the outputs from the previous segment to the inputs to the
zipxSY process, and
5. connects the inputs of the next segment to the outputs of the zipxSY
process.
Its time complexity is primarily dominated by FINDDPSEcTIONS, i.e. O(n?).

83 FUSING UNZIPXSY, MAPSY, AND ZIPXSY PROCESSES

Prior to scheduling, the data parallel sections need to be fused into a single
process through a process called data parallel section fusing. This insulates the
scheduler from having to concern itself with whether the data parallel section
is executed on the cpu or gpgpu. Although trivial, the algorithm is given in
Listing 8.4 and described for completeness.

This method also starts with finding the data parallel sections within
the model. It then creates a new parallelMapSY process to replace the the
zipxSY, mapSY, and unzipxSY processes in the section. The function argument
of the mapSY processes (any one will do as they are the same at this point)
is copied and the inputs and outputs of the section redirected to the new
process. Finally, the obsolete processes and signals are removed from the
model. This method also takes O(n?) time to execute for the same reason as
with the SpLiTDPSEGMENTS algorithm.

84 COALESCING MAPSY PROCESSES

In Section 7.5.1, we discussed how certain processes could be coalesced, or
merged, into a single equivalent. This minimizes global memory transfers in
the synthesized cupa code. While the principle appears to be simple, initially
its implementation proved to be the opposite.

function FuseDPSEecTIONS(M)
returns modified model
inputs: M, a ForSyDe model

sections « FINDDPSEecTIONS(M)
for each section in sections do
new_process < new specialized process
copy function argument from mapSY processes in section to new_process
redirect inputs to section to inputs to new_process
redirect outputs from section to outputs from new_process
remove entire section from M

ListiNG 8.4 — Algorithm for fusing data parallel sections.
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function CoarLescEMAPSYPROCESSES(M)
returns modified model
inputs: M, a ForSyDe model

sections « FINDDPSecTIONS(M)
chains « all chains in sections
for each chain in chains do
new_process < new specialized process
new_function < new empty function
input_param <« function input parameter with the same data type as the input
parameter to the function of first process in chain
add input_param to new_function
set return value of new_function to the same data type as the return value of the
function of last process in chain
source_variable « input_param
dest_variable < empty
for each process in chain do
function « function of process
dest_variable < new unique variable with same data type as return value of
function
add code to new_function which adds dest_variable as local variable
add code to new_function which set the value of dest_variable by invoking function
with source_variable as input
source_variable « dest_variable
add code to new_function which returns value of dest_variable
redirect input to first process in chain to input to new_process
redirect output from last process in chain to output from new_process
remove entire chain from M

Listing 8.5 — Algorithm for coalescing mapSY processes.

Coalescing mapSY processes is equivalent to merging their process func-
tion arguments into a single function. The first considered approach entailed
inlining one function onto another. However, this typically requires that the
functions are first converted into abstract syntax trees (ast) [2, 3], a process
demanding syntax analysis of a language which is infamous for its difficulty
to parse. Then the tree of one function must be appended to another by
replacing occurrences of return statements in the tree. Furthermore, the local
variables within a function must be renamed in order to avoid name clashes.

Fortunately, a much simpler approach was discovered. Instead of modify-
ing the existing functions, a new function is created which calls each function
in a sequential manner. This is relatively straight-forward and can be done
without having to analyze the functions®. The algorithm is given in Listing 8.5,
and its principle can also be applied for coalescing parallelMapSY processes.

The algorithm first looks for chains of mapSY processes within the data

1The prototypes must still be examined in order to discover the data types of its return
value and parameters, but that can be done easily through a series of string searches.
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parallel sections of the model. Then, or each chain, it constructs a new process
which contains a new function as well as the functions of the other mapSY
processes. To allow this, a new process type coalescedMapSY was devised.
The new function has the same input parameters as the function in the first
process in the chain, and returns a value of the same data type as the value
returned from the function in the last process. The algorithm proceeds with
iterating over all function arguments in the chain and generates code which
sequentially invokes each function of the following mapSY processes. The
intermediate results are stored in a new local variable (optimization of the
register use is left to the C compiler). Lastly, the input and output signals to
the chain are redirected to the new process and the entire chain is removed
from the model. Iterating over all chains take O(n) time, but finding the
chains may take O(n?) at most, thereby yielding a total time complexity of
O(n?).

85 THE PROCESS SCHEDULER

The process scheduler is responsible for scheduling the processes such that
the perfect synchrony hypothesis is obeyed and managing the signals which
transfer the data from one process to another.

We begin by covering the algorithm used for finding a process schedule.

8.5.1 SFM-BPS

As described in Section 7.4.2, several approaches were considered in finding
schedule for a ForSyDe model. The first method — sem-EP — proved incomplete,
and the second method — sem-rps — exhibited a higher time and size complexity
than necessary. This, among other limitations, was fixed in the third method —
seM-BPs”. A brief sketch of sem-Bps illustrating its approach was also given
in Section 7.4.2 while postponing its details which will be covered in this
section.

The algorithm for sekm-BPs is given in Listing 8.6, and a simplified execution
on an example model is illustrated in Figure 7.4 on page 61. First it builds a
queue of starting points containing all processes that are directly attached to
the model outputs. For each process in the queue, it builds a partial schedule
which is appended to the complete schedule. This process is repeated until
the queue is empty.

The partial schedule is generated by FINDParRTIALSCHEDULE. For a given
input process P, the function recursively calls itself on each process P’ which
is located at the other end of every input port of P. This allows the algorithm
to visit every process that is involved in generating the model outputs and
thus must be part of the schedule. The recursion stops when either

2As a reminder, sem stands for Schedule Finding Method, ep for Execution Paths, rps for
Forward Process Search, and Bps for Backward Process Search.
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function FINDSCHEDULE(M)
returns process schedule for M
inputs: M, a ForSyDe model

schedule « empty list
visitedg < empty set
visited] « empty set
queue < empty queue
for each output port port in M do
add process of port to head of queue
while queue is not empty do
process < head of queue
remove head from queue
visitedy < empty set
partial_schedule < FINDPARTIALSCHEDULE(process, visited, visited], queue)
if insertion point of partial_schedule is at beginning then
insert partial_schedule before head of schedule
else
insert partial_schedule after insertion point in schedule
visitedg <« visitedg U visitedp
return schedule

function FINDPARTIALSCHEDULE(P, visited, visitedr , queue)
returns schedule for processes visited along the path from P to a model input port
inputs: P, a process starting point
visited, set of globally visited processes
visited], set of locally visited processes
queue, queue of starting points

schedule < empty list
if P € visited; then
return schedule with P as insertion point
if P is a delay element then
add process at other end of in port of P to end of queue
return P with at beginning as insertion point
ip < at beginning
if P ¢ visited; then
visitedy « visitedy U {P}
for each in port port in P do
partial_schedule <« FINDPARTIALSCHEDULE(process at other end of port, visitedg,
visited], queue)
schedule « schedule + partial_schedule
if insertion point of partial_schedule is not at beginning then
ip < insertion point of partial_schedule
schedule « schedule + P
return schedule with ip as insertion point

LisTiNG 8.6 — The skm-BPs algorithm.

CHAPTER 8. METHODS AND ALGORITHMS
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1. an input signal is reached,

2. an already visited process is reached, or

3. adelay element is reached.

The first two conditions are simple to understand: an input signal has no
process at its output port, and halting at an already visited process avoids
redundant search — a problem which was evident in sem-Fps. More importantly,
it also provides a termination condition for when the model contains feedback
loops. However, this alone is not enough to generate a correct schedule for
such models.

To see why the first two halting conditions are not sufficient, we turn to
an example. In Figure 8.1, we see two slightly different models containing
feedback loops, along with the correct schedule and the schedule generated
by srm-Bps if only the first two conditions were applied. In reality, the exact
placements of the delay elements in the schedule is not important as long as all
the other processes are correctly scheduled (to see why, see Section 9.4). Hence,
in (a), the generated schedule is acceptable, while the schedule generated in
(b) is clearly not correct.

To fix this problem, we need the third halting condition. However, instead
of returning an empty list, the algorithm returns a partial schedule containing
only the delay element D that was reached. Furthermore, the process P’, which
precedes process D in the model, is added to the end of the starting point
queue. We also augment the structure returned by FINDPARTIALSCHEDULE to
include an insertion point. The insertion point can assume one of the following
two values:

m [f the recursion stopped due to reaching an already visited process P,
then the insertion point for the partial schedule is after process P in the
complete schedule.

m  Otherwise the insertion point is at the beginning.

7 7 N GENERATED SCHEDULE
0
! DP, P
= b CORRECT SCHEDULE
2 P, P D
(a) Acceptable
7 [ p . GENERATED SCHEDULE
0
! P, D P
CORRECT SCHEDULE
D P
D P P

(b) Incorrect

Ficure 8.1 — Schedules generated for two example models containing feed-
back loops if the algorithm only applies the two first halting conditions. The
D process is a delay element.
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With this the algorithm can properly handle feedback loops as described
in Figure 8.1. However, if the feedback loop itself contains feedback loops,
then the result will not be as expected. We fix this by dividing the set of
already visited processes into two sets — one set of globally visited processes
and one set of locally visited processes. The idea is that the inner feedback
loop is considered local in the scope of the entire model, and should thus be
contained in the partial schedule. Upon return from FINDPARTIALSCHEDULE,
the processes in the locally visited set are added to the globally visited set and
then emptied before the initiating the next partial schedule search. Lastly,
we slightly change the decision of the insertion point by requiring the visited
process P to have been globally visited in order for the insertion point to
become P. In all other cases, the insertion point is at the beginning.

Having devised a method which appears to be more efficient than its
predecessor, let us now analyze whether it actually is. By maintaining a set
of already visited processes, the method effectively only visits each process
once, thus bringing its time and size complexity to O(n) where  is the total
number of processes in the model3. Using hash tables allows the visited sets
to be searched and added to in constant time. Another significant factor to
consider is search of the schedule for an insertion point, which in worst case
may take O(n) if the entire schedule needs to be traversed. In fact, if this is
done for every partial schedule, the total number of traversals may become
O(n?). Fortunately, since we are only looking for a particular element in the
schedule, we can maintain a hash table to allow the sought element to be
found in constant time. Regarding space, no process appears in any schedule
— partial or complete — or any visited set more than once. Hence, the total time
and space complexity for seM-Bps appears to be O(n) — a great improvement
from sem-gps’ O(mn?).

8.5.2 Managing the signals

Signal management entails two tasks: (i) transferring data from one process to
another, and (ii) storing intermediate results, if necessary, until all processes
have been executed. Output data from a process may not necessarily be of
the same type as its input data: the amount of data may change (from array to
scalar or from scalar to array); or the type itself may differ (e.g. from int to
float). Hence the signal handling must be versatile enough to accommodate
such data conversions.

An initial idea was to inline the function calls of the preceding processors
into the function parameters of the following process. By doing this for the
entire model, the need for intermediate value containers is dissolved and is
instead taken care of by the C compiler. The disadvantage, however, is that
processes may be invoked multiple times for a single input data. While this

3The pedantic will note that n is actually the number of processes which can be reached
from a model output port, but we will assume that all input models are completely connected.
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does not affect the final output from the model, the total execution time may
increase dramatically. This approach is also inefficient when operating on
arrays, and was thus quickly abandoned.

The remaining option was to use C variables, either local or global, to
store the intermediate results. It was decided to use local variables as this
will only consume memory when the model is invoked instead of continu-
ously retaining memory as it would with global variables. The usage of local
variables can be done in two ways: either a separate variable is used for each
signal, or variables are reused or even skipped entirely when allowed*. The
former is easier to implement but demands more memory. The latter is more
memory-efficient but requires sophisticated tools such as liveness analysis
(which is also used in register allocation) [2]. To limit the implementation
effort, the first method was chosen.

Since a signal is only declared as an edge between two processes, its data
type is not immediately available. In fact, the only place where the data type is
explicitly stated in the model is in the prototype of the function arguments to
the mapSY processes. Hence a method was implemented to traverse the model
and propagate the data types from the mapSY and parallelMapSY processes to
the signals. An method for doing this is available in Listing 8.7.

The algorithm is simple. Starting from the one of the processes associated
with the signal, the network is recursively scanned using prs until a mapSY
process is found. Once found, the process’ function argument is analyzed.
Depending on the search direction, either the data type of the input parameter
or the data type of the return value or output parameter is returned. Searching
the network in both directions ensures that the entire network is covered.
If no data type can be found, then the model cannot be synthesized and is
rejected. This algorithm takes linear time to execute for each signal, hence
O(n?) for all signals. The total execution time can be reduced by improving
the algorithm to save the data type for a signal once it has been found. This
means the method will not only search for the nearest mapSY process but also
the nearest signal for which a data type has already been discovered.

However, just propagating the data type is not enough. Along the data
flow, the data type may change into an array data type or grow in size. For
instance, if a mapSY process consumes a value of data type int which has
originated from a unzipxSY process, then the data type of the values flowing
into the unzipxSY process must be of data type int[]. The size of the array is
then dependent on the number of output signals from the unzipxSY process,
which must be discovered separately. The same principle can be applied to
zipxSY processes. Fortunately, discovering and propagating the array sizes
can be done using the exact same method as for the data types themselves.

4This is possible for instance when a mapSY gets its input from an array signal which has
passed through an unzipxSY and its output is directed to a zipxSY. In such instances the input
parameter can be taken directly from the input array and its return value written directly to
the output array.
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function FINDS1GNALDATATYPE(S)
returns data type for S
inputs: S, a signal between an out port of process P; and an in port of process P,

data_type < FINDSIGNALDATATYPEFS(S)
if data_type was found then
return data_type
else
data_type < FINDSIGNALDATATYPEBS(S)
if data_type was found then
return data_type
else
indicate error

function FinDS1GNALDATATYPEFS(S)
returns data type for S using forward search
inputs: S, a signal between two processes P; and P,

if S is a model output signal then
indicate that data type was not found
else
if P, is a mapSY then
return data type of input parameter to function argument of P»
else
for each out_port in out ports of P, do
next_signal < signal between out_port some in port of another process
data_type < FINDSIGNALDATATYPEFS(next_signal)
if data_type was found then
return data_type
indicate that data type was not found

function FINDS1GNALDATATYPEBS(S)
returns data type for S using backward search
inputs: S, a signal between two processes P; and P,

if S is a model input signal then
indicate that data type was not found
else
if P is a mapSY then
return data type of return value or output parameter of function argument of P;
else
for each in_port in in ports of P; do
prev_signal < signal between some out port of another process and in_port
data_type < FINDSIGNALDATATYPEBS(next_signal)
if data_type was found then
return data_type
indicate that data type was not found

ListinG 8.7 — Algorithm for discovering the signal data types.
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8.6 GENERATING THE CUDA KERNEL

In Chapter 4, we learned that all pGpu programs generally follow the same
pattern, namely:

1. allocate memory on the device,

2. copy data from host to device,

3. invoke the kernel, which will

a. access the global memory using the index calculated from the
blockIdx and threadIdx values, and then
b. perform the data calculations,

4. copy the result back, and lastly

5. free allocated memory.

Remember that all data parallel sections which will be executed on a gpcru
will at this stage been fused into parallelMapSY processes. For each such pro-
cess we generate two new functions: one function is of course the cupa kernel,
which must be defined as a C function prefixed with a __global__ directive;
and another function which takes care of setting up the Gpgru, transferring
the data, and invoking the kernel with appropriate parameters. By setting the
second function as function argument, the scheduler can manage and execute
the parallelMapSY processes like any other mapSY process. This simplifies the
functionality of the scheduler.

Excluding usage of shared memory, generating code for the cupa kernel
is trivial. The code for performing the data calculations has already been
provided by the developer as part of the model. Hence the software synthesis
component need only generate code which calculates the global memory
index for fetching input data and storing output data, and executes the data
calculation function. As we expect the input data to be arranged as a 1-
dimensional array, the appropriate format of the grid and thread blocks is
also 1-dimensional. If i; denotes a thread’s index within the thread block, s;;
denotes the thread block size, and #;;, denotes the thread block’s index within
the grid, then the indices for accessing the input and output arrays can be
expressed as

lg =ippStp + 1t
ii = igsis (81)
iy = igS0s (8.2)

where s;5 and s,¢ are the number of elements consumed and produced by the
thread. Lastly, for reasons which will soon become apparent, the call to the
data calculation function must be wrapped with an if clause which prevents
it from being executed if the global index i, is larger than or equal to the
number of data parallel processes in the section.

The other function — let us call it the kernel wrapper function — is also
relatively simple to implement despite containing more functionality (again
excluding usage of shared memory and another issue that we will ignore for
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now). Device memory management and data copying are all performed with
simple cupa commands, and the grid and thread block configuration can be
found using the following equation

n

ny = {—ﬂ (8.3)

Sb

where 7, is the number of processes, s; is the thread block size, and n;, is
thus the minimum number of necessary thread blocks. As we want as many
schedulable threads as possible per sm, we set s, to be the maximum thread
block size supported by the device. However, this means that we may generate
more threads than the number of data parallel processes, which is why we
need the if clause within the kernel function to prevent the additional threads
from executing. If we did not include the guard, then these threads would
access invalid memory and potentially result in invalid behavior.

Unfortunately, many NviDIA cUDA-enabled GpGrus set a kernel execution
time out of about 5-10 seconds. If the kernel has not finished within that
time, its execution is aborted. This can be worked around by splitting the
work load into many, smaller kernel invocations which each can finish within
the time frame. As we cannot modify the amount of work per thread, our only
option left is lowering the number of threads issued per kernel invocation.
However, we still wish to achieve full utilization of the cpcru. We devise the
following equation

il utilization = Stbnsmf (8-4)

where s, is the maximum thread block size supported by the device, ng, is
the number of sms on the device, and f is the number of thread blocks to
create per sm (remember that each sm can schedule at most 8 thread blocks;
hence 1 < f < 8). The exact value of f is dependent on the execution time
per thread — kernels with work-intensive or stalling threads which take long
time to finish need a lower f value to prevent time out, while kernels with
fast-executing threads require a higher f value to reach full utilization. To be
on the safe side, f was fixed to 1 in this implementation.

It is possible to lift the time limit, but it must be done in the operating
system environment and is thus out of reach from the application. Hence, the
most user-friendly solution is to detect at runtime whether the time out is in
force and act accordingly.

8.6.1 Utilizing shared memory

The shared memory is used to reduce the number of global memory data
transfers, e.g. when multiple threads read the same data. Although data
sharing is not possible with the ForSyDe constructs covered in this work,
shared memory can still be used to potentially achieve higher performance
for the ForSyDe models that are supported.
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Usually, the primary bottleneck of cpgpu kernel performance is the global
memory. Hence it is generally advantageous to store data read from global
memory in local variables to allow reuse, thus avoiding having to issue more
than one read transaction. However, as we learned in Section 4.4, using
too many registers per thread may lower the number of thread blocks that
can simultaneously reside in an sm. This lowers the amount of available
intra-thread parallelism and thus decreases performance.

Since the latency for read and write operations from and to the shared
memory is the same as for the local registers>, the shared memory can be
thought of as “additional shared registers”. By first copying the input data
from global memory to the shared memory, the extra local variables are
no longer necessary. This reduces the register footprint per thread and thus
potentially allows more thread blocks per sm. Shared memory can also be used
to reduce global memory write operations by allocating storage for the output
data, but such functionality is not yet provided by the software synthesis
component. However, as the shared memory is evenly divided among the
thread blocks, using too much shared memory will lower the number of thread
blocks that can be scheduled per sm, thus decreasing performance. These
models will therefore only benefit from shared memory usage when thread
block schedulability is already constrained by other factors.

As the required amount is decided by the number of threads, there is an
upper limit on the thread block size. Furthermore, we want to use the thread
block size which minimizes the amount of unused shared memory per sm.
This is a special case of the classical bin packing problem as it involves packing
as many unit size 1-dimensional boxes into a fixed size 1-dimensional box
such that the amount of slack is minimized.

An approximation algorithm for calculating the optimal thread block size
for this situation is given in Listing 8.8. Starting from the largest allowed
thread block size, it iteratively reduces the size until either an optimal config-
uration is found or until there are no better solutions. An important point to
make about this algorithm is that it ignores the register usage per thread and
assumes it is low enough to not affect the performance. For a truly optimal
grid and thread block configuration, this value must be taken into account.
However, it is extremely difficult to get this value as it requires sophisticated
analysis of the kernel code, unless it can be output by the cupa C compiler.

8.6.2  Data prefetching

At the beginning of this work, it was assumed that data prefetching had
to be applied as shared memory and data prefetching is often used in tan-
dem. However, during the implementation phase, it was discovered that data
prefetching is only useful when cupa cores stall due to a synchronization

5This is not entirely true. The shared memory has a limited number of read and write
ports which may cause some cupa cores to stall.
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function BEsTKERNELCONFIGURATION(N, S¢p, Ssm,us Ssm,a)
returns optimal thread block size
inputs: Ny, desired total number of threads
Stp, maximum thread block size
Ssm,u, amount of shared memory used per thread
Ssm,a» total amount of shared memory available per sm

best_tb_size < 0
lowest_unused_sm < S,
th_size <« Sy
while true do
num_tb_per_sm «— | Syp / (tb_size * Sg1,1,) |
if num_tb_per_sm = 0 then
continue
total_sm_used < num_tb_per_sm x tb_size x Sy, ;,
unused_sm < Sy, 5 — total_sm_used
if unused_sm < lowest_unused_sm then
best_tb_size « tb_size
lowest_unused_sm < unused_sm
if unused_sm = 0 V num_tb_per_sm > 8 then
return best_tb_size

ListinG 8.8 — Algorithm for calculating the optimal thread block size when
using shared memory.

barrier. As there is no data sharing between the threads, no such barriers
are needed and thus we can safely ignore data prefetching without losing
performance for the models discussed in this report.



CHAPTER

COMPONENT
IMPLEMENTATION

This chapter discusses the internal mechanisms of the software synthesis component:
model parsing, internal representation, and the synthesis process. The chapter also
briefly describes the expected format of the GraphML files which are given as input
to the component.

9.1 OVERVIEW OF THE COMPONENT DATA FLOW

HE SYNTHESIS PROCESS consists of three stages: parsing, model modifica-

tions, and synthesis (also see Figure g.1). Parsing involves reading the
input file and transforming the model represented in Graphmt format to an
internal model representation object. This will be covered in greater detail in
Section 9.3). Next, the model object is subjected to series of model modifica-
tions. The nature of these modifications depend on the target platform for the
generated code, but their purpose is to facilitate the latter synthesis process
(see Section 7.4.3 for an example of such a modification). The last stage will
be covered in Section 9.4.

9.2 EXPECTED INPUT FORMAT

Apart from requiring the input file to adhere to the Graphmt format, addi-
tional specifications are necessary. For instance, each process node requires
supplementary data which specifies its process type. The Graphmr format
allows such data to be annotated to nodes via <data> tag (see Section 5.2). By
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Input ForSyDe
file model

oo Parsing E@]

Model
modifications

Code

Synthesis s

FIGURE 9.1 — Overview of the synthesis process.

examining the id attribute, the data can then be interpreted to supplement the
processes with whatever additional data they may require. Table 9.1 contains
the expected node data along with a brief description.

The input file must also contain two specialized processes — InPort and
OutPort. These are used to indicate the model inputs and outputs, the model
inputs being represented as out ports from the InPort process, and model
outputs as in ports to the OutPort process. There must be at most one InPort
and exactly one OutPort process in every input model to the software synthesis
component'. These are only used to ensure that the model is completely
connected; once the model has passed all sanity checks, they are removed
from the internal representation.

Whenever a function argument either consumes an array as input or
produces an array as output, the array size must be specified. The value is
given in the appropriate port of its corresponding process through a <data>
tag (see Table g.1). If the function argument both consumes and produces an
array, the array sizes need not be equal.

An example of a complete Graphwmt file is given in Listing 9.1 on page 86
and its represented model is illustrated in Figure 9.2 on page 87.

9.3 MODEL PARSING AND INTERNAL REPRESENTATION

The primary part of synthesizing a ForSyDe model into target code is parsing
the model from file into an internal representation. The input file is first parsed
into an xML document object using an xmL parser library called TinyxmrL++

TNote that this does not limit the model to a single model input or output as those are
represented by the ports of the InPort and OutPort, not by the processes themselves.
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ID

Used in

Description

process_type

procfun_arg

num_processes

initial value

array_size

All processes

mapSY and
paral-
lelmapSY

parallelmapSY

delaySY

Ports of
mapSY and
paral-
lelmapSY

Specifies the process’ type, i.e. which
process constructor is used to create
this process. Typical values are mapSY,
unzipxSY, and delaySY. The value is
case-insensitive.

Specifies the process’ function argu-
ment. The value must be such that it
declares and defines a C function, i.e.
consists of a function prototype and a
function body. For example, the func-
tion argument to a process which in-
crements the input value by 1 could be
declared as follows:

int _func(int x) {
return x + 1;

}

If the code contains one-line com-
ments, then the code must be sur-
rounded by CDATA clauses.

Specifies the number of data paral-
lel mapSY processes that the paral-
lelmapSY process represent.

Specifies the initial delay value. If
the value is a string or character, the
it must be declared with surrounding
quotes (") or ticks ("), respectively.
Specifies the array size of either the
input or output array, depending on
whether the port is an in port or an out
port.

TABLE 9.1 — List of key 1ps for <data> tags.
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<?xml version="1.0" encoding="UTF-8"?7>
<graphml>
<graph id="test" edgedefault="directed">
<node id="in">

<data key="process_type">InPort</data>
<port name="out" />
<[/node>
<node id="out">
<data key="process_type">0utPort</data>
<port name="in" />
</node>
<node id="div">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
void func(const intx input, float* output) {
output[0] = (float) input[O] / (float) input[1];
output[1] = (float) input[2] / (float) input[3];

}
<[/data>
<port name="in">

<data key="array_size">4</data>
</port>
<port name="out">

<data key="array_size">2</data>
</port>

</node>
<node id="add">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
float func(const int* input) {
return input[0] + input[1];

}
<f/data>
<port name="in">
<data key="array_size">2</data>
</port>
<port name="out" />

</node>

<edge source="in" sourceport="out" target="div"
targetport="in" />

<edge source="div" sourceport="out" target="add"

targetport="in" />
<edge source="add" sourceport="out" target="out"
targetport="in" />
</graph>

</graphml>

LisTING 9.1 — An example of a Graphwmt input file. The model consists of
two mapSY processes, the first accepting a 4-element array and producing a
2-element array, and the second consumes the 2-element array and produces
a single value.
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FIGURE 9.2 — Illustration of the model specified in Listing 9.1.
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Ficure 9.3 — The classes used in the internal representation of ForSyDe
models. The labels shall be read along the direction of the arrow, e.g. “Model

has many Processes”, “MapSY is a Process”, “MapSy has a Function”, etc.

(48], originally developed by Lee Thomason. The xmL structure is then tra-
versed in two sweeps: the first sweep builds the ForSyDe processes from the
<node> tags; and the second sweep creates the port connections between the
processes from the <edge> tags. Once composed, the model is run through a
sanity check which ensures that the model is valid from a ForSyDe perspec-
tive. This also simplifies the latter parts of the synthesis process as less error
handling is needed.

The model itself is represented using a collection of C++ classes (see
Figure 9.3). In general, the model is nothing more than a directed graph. The
Process class is the most central entity of the model. It maintains two sets



88 CHAPTER 9. COMPONENT IMPLEMENTATION

of Port objects, which represent the process’ in and out ports. All process
types derive this class in order to provide uniformity. The Model class in turn
contains a set of Process objects as well as two sets of pointers to the Port
objects to signify the model’s in- and outputs. All Port object belongs to a
Process object and can be connected to another Port object, thus establishing
a connection between the two processes. Through these connections, the
entire model can be traversed.

9.4 THE SYNTHESIS PROCESS

The synthesizer module adopts the following pattern:

1. Find a schedule.

2. Rename function arguments to avoid name clashes and remove dupli-
cates.

Create wrapper functions for coalescedMapSY processes.

Create cupa kernel functions for parallelMapSY processes. If pure C
code is desired, wrapper functions are created instead.

Create signals for each connection between all pairwise connections.
Discover data types for the signals.

Propagate array sizes between the signals.

Generate header and implementation file, containing the definition of
all function arguments and the model execution itself.

All methods and algorithms applied are explained in Chapter 8 except for
the final step which will be briefly described in this section.

Defining the function arguments in the implementation file is trivial.
One simply needs to iterate over all processes in the schedule and copy the
function arguments directly. However, in C a function must be defined or at
least declared before it can be invoked, meaning that the function arguments
must be copied in reversed order as they appear in the process (which is why
wrapper functions are inserted as first function argument once created).

The code for executing the model is declared inside a single function. This
function is the public interface that allows the developer to invoke the model.
The model input and output data is passed through the function parameters.
This allows a model to have multiple outputs as C functions can only return a
single value)?.

For each signal, a local signal variable is created inside the model execution
function. These act as the intermediate storage containers for the data prop-
agating across the model network as processes are executed. Scalar values
are allocated on the stack, while arrays are always allocated on the heap3.

bl

N oaw

2 Attempts were made to return the output values using a struct, but this resulted in
excessive memory traffic which hampered performance.

3The initial approach was to allocated all variables on the stack to simplify memory
management. However, this caused segmentation faults for models with large input data as
the maximum allowed stack frame size was exceeded.
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Moreover, for each delaySY process, a static delay variable is also created. In
C, static variables declared inside a function retain their values between
function calls. To implement the desired behavior, the delaySY processes need
to be executed in two steps. The first step simply writes the value of its delay
variable to the process’ output signal. This is invoked for all delay elements
prior to executing the schedule. The second step writes the value of the pro-
cess” input signal to its delay variable, and is executed after all processes have
been executed. A salutary effect of this is that the order of the delay elements
within the schedule does not matter, as long as they are present (this allows us
to use the schedule generated by skm-BPs; see Section 8.5.1). Note that if signal
variables were reused and shared between multiple signals, this approach
would have to be modified as the value to store may have been overwritten by
another process after all processes have been executed.

The next step is to generate the code which execute the processes. This is
done by iterating over the schedule, identifying the process type, and then
invoking the appropriate code generator function (currently, the selection
is done through a switch statement). Letting CoalescedMapSY and Paral-
le1lMapSY derive from MapSY allows the synthesizer module to apply the same
execution schematics for coalescedMapSY and parallelMapSY processes as for
mapSY processes. In this context, the term “execute” is not restricted to trig-
gering function: it also entails transferring values from one signal to another
(e.g. as with unzipxSY and zipxSY processes).

Following this schema allows any model consisting of the supported
process types to be synthesized into correct cuba C or just pure C code
without any need for manual modifications.






CHAPTER

COMPONENT LIMITATIONS

This chapter discusses the extent to which data parallelism can be exploited in
a model, the supported models and process types, and features which have not
been implemented in this work. It also covers some related performance-improving
techniques, such as pipelining, and why these are not supported.

10.1 SUPPORTED MODELS, PROCESS TYPES AND DATA TYPES

T THE POINT of writing, the software synthesis component accepts models
Acontaining processes of the following types:

m delaySY
mapSY
parallelMapSY
unzipxSY
zipWithNSY
zipxSY
The component is capable to synthesize any process configuration consisting
of these types. The maximum number of model inputs and outputs is limited
by the number of parameters that a C function may have, which is compiler-
specific. The maximum array size of each input or output is equal to the
maximum value of an int + 1. Models containing unrecognized process types
will be rejected.

The software synthesis component also requires that the process function
arguments use primary C data types only as parameters or return value, i.e.:

m char,
m unsigned char,

91
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m short int (orjust short),

m unsigned short int (orjustunsigned short),
m int,

® unsigned int,

m long int, (or just long),

m unsigned long int (orjust unsigned long),
m float,

m double, and

m  long double.
Function arguments containing any other data type in its parameters are
rejected. However, the function arguments may use any data types internally.

Another limitation is that the size of the input data must remain constant.
If the size of the input data changes, the model needs to be modified, resyn-
thesized, and the application recompiled. Hence there is no way of changing
the input data size at runtime unless the synthesized code is manually altered
to allow such functionality. However, this limitation is inherited from the
ForSyDe framework, not from the implementation of the software synthesis
component.

10.2 NO AUTOMATIC EVALUATION OF BEST EXECUTION PLAT-
FORM

Although the software synthesis component successfully recognizes inter-
process data parallelism and generates code to offload execution of those
processes on a GPGPU, it makes no consideration whether this will actually
improve the performance. For instance, if the input data size is too small, then
the cost of the overhead of additional data transfers and kernel invocations
may be greater than the gain of using the cpcru for parallel execution instead
of executing the processes sequentially on the cru (Skepu addresses this prob-
lem through execution plans; see Section 3.2). Therefore, before deployment,
the designer should generate at least two versions of his model — one C ver-
sion and one cupa version — and run tests to compare their performance. In
addition, the performance of the cupa version may also be affected by usage
of shared memory, which may require testing of even more versions.

10.3 UNEXPLOITED TYPES OF DATA PARALLELISM

There are many types of data parallelism. Through the mapSY processes, the
software synthesis component is capable of synthesizing cupa C code from
models which are known as embarrassingly parallel, i.e. each computation is
done using data which is only used by that task. However, there are other
types of data parallelism which have many applications that currently cannot
be exploited by the component.
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10.3.1  Reduction data parallelism

Reduction is the task of computing a single value from a multi-value data
set. A common example is sum reduction which has already been covered in
Section 4.4.3. Figure 10.1 illustrates a model which exhibits reduction data
parallelism. Each level is a data parallel section consisting of processes which
operate on data independently from one another.

Although it displays many similarities with the data parallelism described
in Section 7.2.1, exploiting reduction data parallelism requires more work.
First, its structure can no longer be expressed using single-input mapSY
processes, but requires zipWith or zipWithN processes which are capable of
accepting two input signals.

Second, ForSyDe lacks a process constructor which denotes this internal
structure, forcing the software synthesis component to identify such regions
within the model. This demands a much more complex detection algorithm
compared to the one proposed in Listing 8.1 on page 68. In comparison, Skepru
provides a skeleton called MapReduce which allows the entire substructure to
be expressed using a single model entity [15], thus absolving the need of any
detection algorithm. Doing the same for ForSyDe should not be simple, and a
suggestion is provided in Section 13.2.

Third, the kernel function for executing a reduction data parallel region
is more complex. The kernel function requires additional input parameters.
Also, with new data being computed at each level, the threads must now do
multiple sweeps across the input data. As we saw with the sum reduction
example in Section 4.4.3, doing this while avoiding thread divergence is not
trivial but feasible.

i - - - -
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FIGURE 10.1 — A model exhibiting reduction data parallelism.
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10.3.2 Data parallelism with partial overlap

Another type of data parallelism is partial overlap data parallelism. Unlike
reduction data parallelism, its computational part can be expressed using sim-
ple single-input processes such as mapSY processes. However, the processes
no longer operate on completely independent data; instead, parts of the input
data are shared among the processes (see Figure 10.2 for an example). This
causes two problems.

First, it is uncertain whether such data-shared data flow can be expressed
in ForSyDe. If it could, it would most certainly involve a convoluted pattern
of interconnected unzipxSY, zipxSY and signal value copying, thereby making
it impossible to detect this pattern within a model. In comparison, this is
trivial to achieve in Skepru using the MapOverlap skeleton.

Second, executing such models efficiently on a GpGpu requires a much
more competent usage of the shared memory together with data prefetching
(see Section 4.4.1 and Section 4.4.4, respectively). Otherwise the application
runs a risk of exhausting the global memory bandwidth at the cpgpu, which
may limit performance.

10.4 PIPELINING

Another type of parallelism not exploited by the software synthesis component
is pipelining, a performance-enhancing technique commonly used in many
areas of microelectronics. It involves dividing a task into separate stages of
computation that can then be executed simultaneously but on different data.
Figure 10.4 shows how the model illustrated in Figure 10.3 can be executed
with or without pipelining. As the same pattern is present in sequential
ForSyDe models, one may argue the following: Since a GpGpPU consists of
multiple processing units, would it not be possible to allocate a portion of the
cores to execute each process, and then forward the data from one portion to
another? The idea is also illustrated in Figure 10.5.
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FiGuUre 10.2 — A 2-dimensional input data set, where each set consists of a
4 x 4 submatrix that partially overlap with its neighboring data sets.
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FIGURE 10.3 — Sequential ForSyDe model of 4 processes.
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(a) Time line of the ForSyDe model in Figure 10.3 executed without pipelining.
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(b) Time line of the same model executed with pipelining.

F1GURE 10.4 — Process execution time line of the sequential 4-process ForSyDe
model.
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FiGure 10.5 — GPGPU resource distribution for pipelining the 4-process
ForSyDe model.
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Technically, it is possible to include multiple tasks within the same kernel
function: an if-else statement, together with the thread indices, can be used
to control which threads execute which tasks (see Listing 10.1). A similar
approach has been tried to merge independent kernel functions into a single
kernel in order to reduce the kernel launch overhead and maximize crGru
utilization [26]. However, this is a naive solution with two problems.

The first problem is thread divergence. If threads within the same warp
execute different paths, they will be interchangeably stalled until all branches
have been executed, thus limiting performance. Since warps never cross the
thread block boundaries, this problem can be solved by dividing the tasks,
not on thread level, but on thread block level [26].

The second problem is that this solution can only be applied directly if no
tasks depend on data produced by another task. If they do, then such tasks
must be synchronized in such a way that they are not allowed to proceed until
the data is available. With the first generation of NvipIA cupa graphics cards,
the only way to synchronize threads across thread blocks was to split the steps
into multiple kernel invocations [22], which increased kernel overhead. Wu-
chun Feng and Shucai Xiao made an attempt to circumvent this problem, but
their solution ran a theoretical risk of producing incorrect results [22]. Newer
generations with compute capabilities 2.2 and later include functionality
which addresses that risk, but it suffered from such poor performance that in
the end there was no gain to do this kind of synchronization from within the
kernel.

Lastly, it must be stressed that gpGru are primarily data-driven entities.
So even if the problems above were addressed and inflicted no performance
penalty whatsoever, there is still the overhead of transferring the data back

__global__
void kernel(int* input, int* resultl, ..., int* output) {
int index = threadldx.x;

if (index >= 0 && index < 10) {
executeTaskA(input, resultl);

}
else if (index >= 10 && index < 20) {
executeTaskB(resultl, result2);

}

else {
executeTaskN(resultN, output);

}

LisTING 10.1 — Example of a naive cupa kernel function which executes more
than one task.



10.5. POTENTIAL PERFORMANCE PROBLEM WITH PROCESS COALESCING 97

and forth between the cpu and the gpGru. Due to the way praM memories
work, the amortization rate increases with larger data transfers (although with
diminishing returns). This means that a chain of tasks will only benefit from
being executed on a gpGpu when:

1. the input data sets and the number of computations within the tasks
are large enough to offset the costs of transferring the data between
the cpu and gpGpu and launching the kernels; or

2. each task is so computation-intense that they alone offset the cost of
the memory transfers and kernel launches even for single input data
entities.

However, such tasks benefit more from being executed on processing units
optimized for sequential computations, e.g. cpus. Moreover, for pipelining to
be efficient, each task needs to take about the same amount of time to execute.

10.5 POTENTIAL PERFORMANCE PROBLEM WITH PROCESS COA-
LESCING

Although process coalescing (see Section 7.5.1) appears to be a promising
technique to minimize kernel invocations and eliminate redundant memory
transfers, it does also introduce another problem.

Data between processes still need to be transferred, coalesced or not. In
the algorithm presented Section 8.4, this data is intermediately stored in local
variables, thus potentially increasing the register footprint. If the register
usage per thread becomes too large, then either the number of thread blocks
that can be scheduled on an sm decreases, or variables will be spilled to the
thread’s local memory which resides in global memory. Both results in a
performance decrease.

For such instances, it could be better to leave the processes separate, thus
introducing multiple kernel invocations, but at the same time avoiding the
redundant data transfers between the invocations. The reasoning is that, while
each kernel invocation does introduce some overhead, the cost may be lower
than that of the additional global memory operations caused by the process
coalescing.
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REsuLTs AND MEASUREMENTS

This chapter presents the performance results from the models of two test applica-
tions that have been synthesized using the software synthesis component. The first
application is a Mandelbrot generator, and the second is the line scan application
described in Section 7.1.

11.1 PERFORMANCE TESTS

o assEss ITs effectiveness, the software synthesis component was applied
Ton models derived from two applications — a Mandelbrot generator, and
the line scan application that was described in Section 7.1 on page 53. We
are mainly interested in the correctness of the synthesized code, and its
performance. For the latter, a hand-written single-threaded C version was
written for each application to use as a benchmark baseline.

The models had to be designed twice. In the first attempt, the line scan
model was designed in Haskell and then written to a Graphmu file using the
Graphwmt backend. This meant that the data parallel sections were expressed
using unzipxSY, mapSY and zipxSY processes. The file was then manually
modified to replace the Haskell functions used as process function arguments
with C function equivalents. The Mandelbrot model was designed to follow
the same approach as the line scan model, even though the Graphmu file was
written manually. This produced models where the number of processes and
signals was proportional to the size of the model input. As a consequence, the
Graphwmt files could be huge; for example, the Graphmt file for representing a
1,000 X 1,000 Mandelbrot generator model required over 850 mB. Even with
an Intel Core i7 8 xB 12 at 2.80 GHz and 8 GB DDR3 RAM at 1,333 MHZ, the
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synthesis process ran out of memory already when the Graphmt file exceeded
half a gigabyte, and took over an hour for the larger Mandelbrot models it did
manage to synthesize successfully.

Since the data parallel sections are internally converted into parallelMapSY
processes after parsing, it was decided to allow this process type to be used
already in the Graphwmt file. The models were then redesigned using paral-
leIMapSY processes. As this disconnected the model size from its input data
size, the size of the Graphmt files reduced dramatically; in case of the 1,000 x
1,000 Mandelbrot generator, the file size shrank from 878 ms to 1.2 kB.

Several variations of the models were generated in order to measure the
performance over a ranging amount of input data. The models were synthe-
sized into C and cupa C code and compiled using g++ version 4.4.3 and nvcc
release 3.0 version 0.2.1221, respectively, with default optimization flags. The
test cases were executed on two machines: one equipped with an Intel Core iy
8 kB L2 at 2.80 GHZ, 8 GB DDR3 RAM at 1,333 MHZ, and an Nvipia Quadro Nvs
290 with 16 cupa cores, 256 MB DDR2 RAM; and another with similar cpu and
DpRAM hardware but an nvipia Quadro 6oo with 96 cupa cores, 1 GB DDR3 RAM.

To avoid timeout, the data parallel computations were divided into multi-
ple kernel invocations (this functionality was already available in the synthe-
sized cupa C code produced by the software synthesis component). Each test
case was run 10 times and then an arithmetic mean average was calculated
from the results.

11.1.1 Mandelbrot tests

Generating Mandelbrot images is a classic embarrassing data parallel problem.
Each pixel coordinate is converted into corresponding coordinate within a
rectangular coordinate window in the complex plane. From this complex
coordinate an integer value is computed which corresponds to whether the
coordinate is part of the Mandelbrot set. In these tests, the window was
bounded by (-1,-1) and (1,1). Its ForSyDe model consists entirely of a data
parallel segment. When this segment is expressed using parallelMapSY, the
model shrinks to a single process.

The performance results are given in Table 11.1, and the speedup of the
synthesized code compared to the hand-written single-threaded C version is
shown in Figure 11.1. We see that the synthesized C code performs equally
with the hand-written version. As expected, both synthesized cupa C versions
surpass the C versions in all tests. For small input data sizes, the speedup is
hindered by the restricted amount of computations which can be offloaded
to the gpgpu. As the input data size increases, so does the extent to which
the gpgpu overhead can be amortized. Using shared memory also appears to
greatly reduce the Gpgpru utilization rate. This is most likely due to reduced
thread-level parallelism as the size of the thread blocks decreases.
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TaBLE 11.1 — Performance results from the Mandelbrot tests — coordinate win-
dow bounded by (-1,-1) and (1,1), on 16 cupa cores. Maximum measured

Problem Execution time (s)

§1ze C version Synth. CUDA version
(pixels)

HW Synth. w/oSM w SM
10,000 0.54 0.53 0.16 0.20
40,000 2.11 2.11 0.36 0.51
90,000 4.73 4.73 0.69 1.00
160,000  8.40 8.39 1.17 1.68
250,000 13.12 13.12 1.68 2.53
360,000 18.91 18.89 2.38 3.49
490,000 25.72 25.72 3.40 4.64
640,000 33.58 33.58 4.72 6.16
810,000 42.53 42.50 6.18 7.98
1,000,000 52.48 52.45 7.84 9.86

standard deviation: 4.48%.

Speedup

Ficure 11.1 — Relative speedup of the Mandelbrot tests — large coordinate
window, on 16 cupa cores — compared to the hand-written single-treaded C

version.
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¢ Synthesized CUDA (w/o SM)
o Synthesized CUDA (w SM)
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However, after reaching a peak of a factor of 8, the results also show
that the speedup starts to decrease for larger input data. Figure 11.2 shows
that this performance decrease is a result of increasing computation time
per pixel when executed on the gpGrpu. A reasonable explanation for this
phenomenon is yet to be found, although a promising theory arose when
analyzing how each pixel is processed. Figure 11.3 shows an example of a
rendered Mandelbrot image. Coordinates outside the Mandelbrot set only
take 2—5 iterations to compute, while coordinates inside the Mandelbrot set
require the maximum iteration count. Computations for coordinates on the
border land somewhere in between. By visual measurements we see that the
coordinate window bounded by (-1,-1) and (1, 1) appears to contain slightly
more white-colored pixels than black-colored. This would mean that the
average number of computations per pixel decreases as the total number of
pixels increases. Expressed using Amdahl’s Law, the parallel portion of the
total work becomes relatively smaller compared to the sequential portion.

To make the workload more uniform across the pixels, the window was
shrunk to (-1/2,-1/2) and (1/2,1/2). The performance results from rerunning
the tests on the smaller window are shown in Table 11.2 on page 104, and the
relative speedup is shown in Figure 11.4 on page 104. Although the overall
speedup has increased, the trend of continuously reduced speedup after
360,000 pixels remains. However, the rate at which the speedup decreases
has diminished, which indicates that the hypothesis of increasingly smaller
parallel-to-sequential ratio within the larger coordinate window was not
entirely wrong and that there are other factors at work.

Lastly, for some coordinates, the integer value produced by the crcru
differed slightly from that produced by the cpu. Presumably, this discrepancy
is caused by differing architectures of the floating point units between the cru
and the cupa cores.

This space was left blank intentionally.
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FiGure 11.2 — Computation time per pixel for the synthesized cubA (w PC, w/o
sM) Mandelbrot-generating code, large coordinate window.

(L1)

(-1,-1)

Ficure 11.3 — A rendered Mandelbrot image, marked with the windows
containing the coordinates of interest.
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Problem Execution time (s)

size C version Synth. CUDA version
(pixels)

HW  Synth. w/oSM w SM
10,000 1.29 1.30 0.20 0.27
40,000 5.14 5.14 0.57 0.85
90,000 11.56 11.55 1.17 1.78
160,000  20.53  20.52 1.98 3.05
250,000 32.06  32.05 3.04 4.66
360,000 46.16  46.17 4.32 6.60
490,000 62.81  62.82 5.92 8.87
640,000 82.06  82.06 7.73 11.56
810,000 103.85 103.84 10.05 14.55
1,000,000 128.23 128.14 12.58 17.90

TaBLE 11.2 — Performance results from the Mandelbrot tests — coordinate
window bounded by (-1/2,-1/2) and (1/2,1/2), on 16 cupa cores. Maximum
measured standard deviation: 3.52%.

] o Synthesized C
i ¢ Synthesized CUDA (w/o SM)
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Speedup
—_
N W ke 0NNl 0o O

Number of pixels (in hundreds of thousands)

FiGURE 11.4 — Relative speedup of the Mandelbrot tests — small coordinate
window, on 16 cupa cores — compared to the hand-written single-treaded C
version.
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11.1.2 Line scan tests

The performance results are given in Table 11.3, and the speedup of the
synthesized code is shown in Figure 11.5. Again, we see that the synthesized
C code is on par with the hand-written version. However, the cupa C versions
show nowhere near the same positive results as the Mandelbrot tests: although
the speedup increases with larger input data size, the gpgpru only provides a
mere 31% performance increase at best. In addition, the best-performing cupa
C code also exhibit the same trend of decreasing speedup that was seen in
the Mandelbrot tests. Perhaps even more disturbing, the cupa C code which
has been synthesized without process coalescing performs even worse than
any of the C versions. If the application’s ForSyDe model was evaluated to be
such a good candidate for grGru execution (see Section 7.2), why then does its
synthesized cupa code perform so poorly?

It turns out that there is another factor than just its structure that affects a
model’s suitability for GpGpPU execution — namely its computation complexity.
Through static analysis, the computational code per pixel was estimated
to consist of less than 100 instructions. Due to heavy usage of if-else
statements and for loops, the number of actually executed instructions would
be even less. We pose the following hypothesis: If the amount of computations
executed per thread is small, then the amortization rate of the overhead of
transferring the data to and from the cpGru and launching the kernels can
be increased by (i) raising the total number of threads, or (ii) adding more
computations per thread. From the performance measurements we see
clearly that increasing the number of pixels boosts the speedup (at least for
the process-coalesced cupa C versions), with the break-even point at around
one and a half million pixels. As more pixels means more threads to execute,
this is an indicator that the first approach is applicable. We saw the same
event with the Mandelbrot tests.

To test the second approach, the line scan model was augmented such that
the computations for each pixel also contained a loop which incremented a
counter 10,000 times, thus increasing the number of computations made per
thread. The new performance results, given in Table 11.4 on page 107 and
Figure 11.6 on page 107, clearly indicate that the original line scan model
suffered from a lack of computational complexity. The line scan tests with
original functionality were also rerun on a more powerful graphics card. The
results, given in Table 11.5 on page 108 and Figure 11.7 on page 108, show bet-
ter performance, as expected. However, the speedup was still disappointing
when compared to the number of cupa cores on the Gpu.

Another fact worth noticing is that, even though the code would benefit
from decreased global memory traffic, the cost of reducing thread block size
exceeds the gain from using shared memory to minimize the number of global
memory reads.

In all tests, the produced output was identical for all code versions.
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Problem Execution time (s)
s1ze C version Synth. CUDA version
(7-pixel
rows) HW Synth. w/oPC w PC w PC
w/oSM  w/oSM  wSM
1,000,000 0.26 0.27 0.52 0.26 0.26
2,000,000 0.53 0.54 0.98 0.45 0.46
3,000,000 0.79 0.81 1.48 0.65 0.66
4,000,000 1.06 1.08 1.95 0.84 0.86
5,000,000 1.32 1.36 2.34 1.04 1.06
6,000,000 1.59 1.63 2.80 1.23 1.26
7,000,000 1.85 1.90 3.26 1.43 1.46
8,000,000 2.11 2.17 3.82 1.61 1.65
9,000,000 2.38 2.44 — 1.80 1.85
10,000,000 2.64 2.71 — 2.01 2.05

TABLE 11.3 — Performance results from the line scan tests — original function-
ality, on 16 cupa cores. The synthesized CUDA (w/o PC, w/o $M) version failed
when the input data exceeded 800,000 7-pixel rows. Maximum measured
standard deviation: 3.50%.

1.4
1.2 W 8
1.0 4 RN A " A A A N A A
e A Synthesized C
g 08 o Synthesized CUDA (w/o PC, w/o SM)
& 0.6 o Synthesized CUDA (w PC, w/o SM)
— e T o Synthesized CUDA (w PC, w SM)
0.4
0.2

Number of 7-pixel rows (in millions)

F1GURE 11.5 — Relative speedup of the line scan tests — original functionality,
on 16 cupba cores — compared to the hand-written single-treaded C version.
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Problem Execution time (s)
s1ze C version Synth. CUDA version
(7-pixel

rows) HW Synth. w/oPC w PC w PC
w/oSM  w/oSM  w SM

100,000  1.99 1.93 0.37 0.33 0.42
200,000  3.98 3.85 0.68 0.59 0.78
300,000  5.97 5.78 0.99 0.86 1.14
400,000 7.95 7.71 1.30 1.12 1.50
500,000  9.95 9.63 1.61 1.39 1.85
600,000 11.93 11.56 1.92 1.66 2.21
700,000 13.92 13.48 2.23 1.92 2.57
800,000 1591 15.43 2.52 2.19 2.93
900,000 17.92 17.40 2.83 2.45 3.28
1,000,000 19.89 19.26 3.14 2.72 3.64

TaBLE 11.4 — Performance results from the line scan tests — augmented
functionality, on 16 cupa cores. Maximum measured standard deviation:
4.50%.

I:/‘:"ﬂ_ﬂ_n_E'—__n—__n—__m_n 4 Synthesized C

o Synthesized CUDA (w/o PC, w/o SM)
¢ Synthesized CUDA (w PC, w/o SM)
o Synthesized CUDA (w PC, w SM)

Speedup

— N W ke U N
s s s L s s s s

Number of 7-pixel rows (in hundreds of thousands)

FiGURE 11.6 — Relative speedup of the line scan tests — augmented function-
ality, on 16 cupa cores — compared to the hand-written single-treaded C
version.
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Problem Execution time (s)
size C version Synth. CUDA version
(7-pixel

rows) HW Synth. w/oPC w PC w PC
w/oSM  w/oSM  wSM

1,000,000 0.19 0.21 0.07 0.06 0.06
2,000,000 0.38 0.41 0.09 0.07 0.08
3,000,000 0.56 0.62 0.12 0.08 0.09
4,000,000 0.75 0.82 0.14 0.09 0.10
5,000,000 0.94 1.03 0.16 0.10 0.11
6,000,000 1.12 1.23 0.18 0.11 0.13
7,000,000 1.31 1.44 0.20 0.12 0.14
8,000,000 1.50 1.64 0.22 0.13 0.15
9,000,000 1.68 1.85 0.24 0.14 0.17
10,000,000 1.87 2.05 0.26 0.15 0.18

TaBLE 11.5 — Performance results from the line scan tests — original function-
ality, on 96 cupa cores. Maximum measured standard deviation: 6.21%.
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Ficure 11.7 — Relative speedup of the line scan tests — original functionality,
on 96 cupa cores — compared to the hand-written single-treaded C version.
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11.2 EVALUATION

The results from the synthesized Mandelbrot and (augmented) line scan
models show that the software synthesis component successfully produces
correct and efficient C and cupa C code.

However, with the exception of one test batch, the relative speedup of
the synthesized cupa C compared to the hand-written sequential C code
showed a steady decrease after reaching a certain problem size. Although
the performance is still acceptable, this is nevertheless a disturbing problem.
Three plausible explanations come to mind:

1. The character of the computations is such that the parallel-to-sequential

portion ratio decreases with larger problem sizes.

2. The underlying architecture performs worse as the problem size in-

creases.

3. The problem lies in the behavior of the synthesized code.

As this problem is evident in both the Mandelbrot tests and the line scan
tests, it is dubious that this is caused by the computations themselves as
the Mandelbrot and the line scan tests are completely different in nature.
Furthermore, shrinking the coordinate window failed to remove this problem
for the Mandelbrot tests, although it did diminish the rate of speedup decrease.
It also seems unlikely that the software synthesis component is entirely at
fault as the trend did not appear in the tests for the augmented line scan
model. My suspicion is therefore that the problem is caused by the underlying
architecture, which may or may not be fixed by making appropriate changes
in the synthesized cupa code. To determine the exact cause, however, more
research is needed.

The problem above notwithstanding, the synthesized cupa code still shows
impressive speedup compared to its sequential counterpart. When the perfor-
mance of the cupba code was appalling, the problem was proven to be related
to the input model itself. Once addressed, the synthesized cupa code outper-
formed both the hand-written single-threaded C code and the synthesized C
code, at times with nearly a factor of 11. This is very good considering that
the gpGru was equipped with 16 cupa cores. The results also showed that
process coalescing is an important factor for boosting performance.

Another interesting observation that can be made from these test results
is the factors which appear to affect the speedup of the synthesized cupa code.
In the Mandelbrot tests, although the number of input data elements was
relatively smaller (in the order of hundreds of thousands) compared to that
used in the line scan tests (in the order of millions), the size of each input data
element was larger (12 bytes compared to 7 bytes). This incurs a higher data
transfer overhead per input data element for the Mandelbrot tests compared
to the line scan tests. However, due to its higher computation complexity per
input data element, the amortization rate is greater in the Mandelbrot tests,
thus yielding a greater speedup.
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This leads us to the following conclusion: The speedup gained (or lost)
when offloading execution of parallel processes on the gpGru, instead of
executing them sequentially on the cpu, appears to depend primarily on

1. the number of input data elements,

2. the size of each input data element,

3. the amount of work performed on each input data element, and

4. the number of cupa cores.

Weighing in the cost of data transfers and kernel invocation overheads, and of
course also the computational power of the cpu, one should be able to devise
a formula which can estimate the amount of change in performance when
choosing the gpgpu over the cpu. This would allow the software synthesizer
component to insert code that will make a runtime decision of which execution
platform to use in order to achieve the best performance. Moreover, hardware
upgrades would not require the model to be resynthesized, provided that
some factors, such as overhead costs, remain unchanged. Unfortunately, lack
of time prevented me from investigating this further.

Lastly, we also notice that in none of the tests cases was it beneficial to use
shared memory - in fact, it greatly decreases performance. The reason is that
doing so lowers the number of thread blocks that can be scheduled per sm;
fewer thread blocks means fewer threads to switch in to hide global memory
latencies. Hence, it is better to leave shared memory usage for instances where
data is shared between multiple threads (e.g., such as in data parallelism with
partial overlap; see Section 10.3.2).
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CHAPTER

Furture WoORK

This chapter suggests future work that would expand the work of this thesis and
improve the capabilities of the software synthesis component.

12.1 NEW SOFTWARE SYNTHESIS COMPONENT FEATURES

ESPITE HAVING ALREADY invested a lot of work and time in this thesis
Dproject, even more work remains to be done. For instance, the process
type support needs to be extended, and the performance of the cupa C code
can be improved. Here follows some suggestions (this list is by no means
exhaustive).

12.1.1  Extending the process type support

Although the small number of already supported process types was sufficient
to test the functionality of the component, it would be beneficial if the support
could be extended to include all process types provided by the ForSyDe
framework. Consult the ForSyDe literature for a list of currently unsupported
process types.

12.1.2  Avoiding redundant GPU memory transfers between kernel invocations

Skepu used a notion of lazy cpu memory copying to avoid redundant memory
transfers between kernel invocations (see Section 3.2). This greatly boosted
the performance of Skepu models, and the same methods should be applicable
to the software synthesis component. This would complement the process coa-
lescing technique (see Section 7.5.1), which minimizes kernel invocations but
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potentially also introduces register spilling (see Section 10.5 for a discussion).
Most importantly, this would increase performance when two kernel invoca-
tions are performed consecutively and process coalescing is not applicable
(e.g. when one data parallel pattern in the model is followed by another).

12.1.3 Adding C++ support

Later generations of cupa-enabled graphics card apparently have support
of executing C++ code instead of just pure C code. Allowing C++ code to
be used in the process function arguments could potentially allow more
powerful applications to be modeled, or simplify already-existing modeling
capabilities.

12.1.4 Supporting dynamic input data sizes

Currently, the synthesized code requires that the input data size to the model
remains static. If input data of ranging sizes need to be processed, then a
separate model must be constructed and synthesized for each specific size.
A more user-friendly approach would be to allow designers to leave the
model’s input data size unspecified (although a lower and upper bound may
be required). Upon synthesis, the resultant code would be capable of process
input data whose size is decided at runtime.

12.2 RESEARCH TOPICS

There are also a number of research topics, whose outcome could be imple-
mented in the component. The topics involve exploitation of more types of
data parallelism to more efficient use of the gpgrus.

12.2.1  Exploiting reduction data parallelism

Reduction data parallelism is a common pattern in data parallel applications.
To be able to exploit these patterns, methods need to be found for discovering
them in a ForSyDe model and generating efficient cuba code that minimizes
thread divergence.

12.2.2  Exploiting data parallelism with overlap

Data parallelism with overlap is another common pattern in data parallel
applications. It is usually found in image processing and physics algorithms,
most often operating on 2p matrices (which means that the process type
overlapMapSY suggested in Section 13.2 cannot be applied since it only works
on 1D arrays). Exploiting these patterns requires methods for identifying
them in a ForSyDe model, and competent use of shared memory and data
prefetching in order to achieve efficient execution on a gpGru.
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12.2.3 Determining when GPGPU offloading is beneficial

Even though a model may exhibit one data parallel pattern or another, it is not
always beneficial to use the Gpgpu instead of the cpu to execute those sections
(we have seen this already with the line scan model; see Section 11.1.2). In
order to make this decision, the computation complexity within the data
parallel sections needs to be analyzed, which requires static code analysis of
the process function arguments. Furthermore, the factors that affect speedup
— what they are and how they relate — need to be analyzed (some are identified
in Section 11.1.2).

12.2.4 Exploiting unused memories on the GPGPU

The GpGru contains several additional types of memories than just shared
memory. If used correctly, and in the right circumstances, they can increase
the performance of the application. Research involves finding out what these
circumstances are, and how the memories can be exploited.

12.2.5 Utilizing more than one GPGPU

If the machine has more than one cpgpu installed, the kernel execution could
be split up into multiple invocations, one executed on each cpcru. However,
if the cpGrus are not equally powerful, the workload must be divided and
allocated according to the computation capabilities of each gpGru in order
to achieve maximum speedup. This involves developing an algorithm which
performs this division with acceptable accuracy.
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CONCLUSIONS

This chapter summarizes the thesis work. It briefly reiterates what has been
achieved and the test results. It also checks how the outcome matched the objectives
set out in Chapter 1, and its contribution to software programming and academic
community. The chapter also suggests a set of new process types that should be
added to the ForSyDe framework to improve and simplify modeling and synthesis
of data parallel applications targeting GPGPUS.

13.1 SUMMARY

N REGARD TO the objectives set out in Chapter 1, this thesis project has been
Ia success:

m an extensive literature study has been performed;

m the minimum set of language constructs and operations that has to be
supported has been determined;

m the main challenges have been identified, prioritized, and solved;

m a working prototype of the software synthesis component has been
implemented that takes a ForSyDe model representation and produces
correct and efficient cupa C code that can be executed on a grgpru;

m the software synthesis component has been extensively tested and
evaluated; and

m the project was completed within the set time frame.

In this report, we have learned how applications can be modeled at a very
high level of abstraction using ForSyDe. However, the framework lacked
both a backend for software synthesis into C as well as a means of exploiting
data parallelism within the model for execution on a GpGrU — a data parallel
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execution platform possessing massive computation capabilities. Moreover,
GpGPUs are notoriously difficult to program due to the way data is accessed
and processed, and many interconnected factors affect the performance of the
program. This makes it an exceptionally challenging task to write correct and
high-performing applications for gpGpus.

The work in this thesis aimed to address these concerns. It proposed
a software synthesis process capable of discovering one type of potential
data parallelism in a model and synthesizing either pure C or cupa C code.
To verify its ability, a prototype of the software synthesis component was
implemented and tested on models derived from two applications — a Man-
delbrot generator and an industrial-scale image processor. The test results
showed that the synthesized code was both correct and efficient, except for
the image processing model. In that case, although the model was indeed a
suitable candidate for parallel execution in terms for structure (it applied the
“split-map-merge” pattern; see Section 7.2.1), it lacked sufficient computation
complexity to yield speedup when offloaded on the cpGru. Empirical attempts
also showed that models need to be expressed using specialized process types
in order to be manageable by the software synthesis component.

To conclude, the contribution of this work to the software programming
and academic community is a process which allows applications exhibiting
one type of data parallelism to be modeled at a high level of abstraction. Such
models can then be synthesized into correct and high-performing cupa C
code using an automated tool. Through this process, the model designer can
make use of the massive computational power that the gpgpus provide, with
no or little prerequisite knowledge about the their intricate details.

Although currently only allowing a limited set of data parallelism to be
exploited, this work provides a good platform onto which to build further
support. With more work and research, the process can be extended to include
more complex types of data parallelism, thus allowing developers to take
advantage of the high level-of-abstraction software methodology to model
even more complicated applications.

13.2 SUGGESTED IMPROVEMENTS TO THE FORSYDE FRAMEWORK

In order to make maximum use of the cpGpu and sufficiently offset the gpgru
overhead, the input data to the model need to be large. For example, the
tested Mandelbrot application required 360,000 pixels to achieve maximum
speedup on a graphics card with 16 cupa cores. With each pixel requiring its
own mapSY process, expressing the data parallel sections through a network
of unzipxSY, mapSY, and zipxSY processes yielded extremely large models
which proved to be both awkward and time-consuming to synthesize; at a
certain point the model become so large that the machine ran out of memory.
And for the largest models that the component did manage to synthesize, the
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——| parallelMapSY (f) 7

(a) Applies a combinatorial function f on every value on the input vector signal.

——{ reductionMapSY (f) -

(b) Applies a combinatorial function f on every pair of values in the input vector
signal. The same function is then applied to every pair of produced values until a
single value remains.

—L overlapMapSY (f)(n) |2

i+n

(c) Applies a combinatorial function f on every value set Uj:i—n vj, where i is the

index in the input vector signal.

Ficure 13.1 — New combinatorial process constructors parallelMapSY and
reductionMapSY, and overlapMapSY.

process took more than an hour even on an Intel Core iy at 2.80 GHz.

To address this issue, a new process type — parallelMapSY — should be
introduced to the ForSyDe framework. With this new process type, the func-
tionality of the entire split-map-merge pattern can be encompassed within
a single process, thus disconnecting the model size from being proportional
to its input size. This dramatically decreases both file size and processing
time and allows applications which process very large amounts of data to
be modeled in an elegant fashion. Furthermore, additional process types
should also be added to simplify modeling of reduction data parallelism and
data parallelism with partial overlap (see Section 10.3.1 and Section 10.3.2,
respectively). The suggested improvements are illustrated in Figure 13.1.
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APPENDIX

COMPONENT
DOCUMENTATION

This appendix describes how to build and use the software synthesis component.
It also explains how to maintain the component, in case future developers wish to
extend the process type support, add new features, or in some other way improve
upon it.

A.1 BUILDING

HE SOFTWARE SYNTHESIS component was developed and tested on Ubuntu
T11.1o, but it should work on any Linux distribution®. The source code
comes with a makefile which builds the entire component and requires no
additional tools apart from make, g++ and the standard command-line uNix
tools. Hence, to build the component, simply execute

$ make

This produces the binary f2cc (ForSyDe-To-Cupa C) and puts it in the bin
subfolder along with all generated object files and libraries. To clean the build,
execute

$ make clean

1The component could probably also be compiled and executed under Windows, but no
warrants are made and most likely requires source code modifications.
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The apr1 documentation is available in the docs subfolder, but it can also
be generated from the source code by executing

$ make docs

The newly generated docs, however, are not placed in docs but in the api_tmp
subfolder.

A.2 USAGE

The component runs entirely from the command prompt and is controlled
through command-line arguments. To synthesize a model file with default
options, execute

$ ./f2cc file

This produces a header file and a cupa file with the same file names but
different extensions than the input file. The output file name can be controlled
through the -o switch.

All options must be placed before the input file, but need not follow any
internal order. Here follows a list of all available options:

-0 FILE, -output-file=FILE
Specifies the output files. Default file names are the same as the input
file but with different file extensions.

-tp PLATFORM, -target-platform=PLATFORM
Specifies the target platform which will affect the kind of code gener-
ated. Valid options are C and CUDA.

-no-pc, -no-process-coalescing
CcuDA ONLY. Specifies that the tool should not coalesce processes, even
when it is possible to do so for the given input model.

-use-sm-i, -use-shared-memory-for-input
cupa oNLy. Specifies that the synthesized code should make use of
shared memory for the input data.
-1f FILE, -log-file=FILE
Specifies the path to the log file. Default setting is output. log.
-11=LEVEL, -log-file=LEVEL
Specifies the log level. This affects how verbose the tool is in its logging

and prompt output. Valid options are CRITICAL, ERROR, WARNING, INFO,
and DEBUG. Default setting is INFO.

-v, -version
Prints the version.
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-h, -help
Prints the help menu.

As an example, to synthesize the Graphwmt file model.graphml into C code,
with the log level set to ERROR, execute

$ ./f2cc -tp C -11 ERROR model.graphml

A.3 MAINTENANCE

It is strongly advised that the reader has read and fully understands the material covered in Chapter g
as this section is heavily dependent on it.

The component is built from a set of loosely connected modules (see also
Figure A.1):
m  Config
Exceptions
Forsyde
Frontend
Language
Logger
Synthesizer
Ticpp
Tools
The names should be self-explanatory, but a brief description is given anyway.

Frontend

Forsyde

/|

Logger Exceptions

Synthesizer

Language

Config

Ficure A.1 — Component modules, and how they are connected.
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Conric  Contains user-specified settings for the current program invocation.
If new options are to be included, this is where they belong.

Exceprions Defines all exception classes used throughout the program. New
exceptions should always be put in this module, even if the exception
is only used within some other module or class.

Forsype Defines the module and process type classes, as well as the class
for performing the model modifications. When support is added for a
new process type, the process type class is put here.

FronTEND Contains the frontend definitions. Currently this only contains
the frontend interface and the Graphmr parser. Needless to say, new
frontends go here.

LanGuage Defines the classes needed for defining the process C function
arguments and C data types. This should not need to be modified
unless the function argument support is extended.

Locger Contains the program logger. This should never need to be modified.

SyntHesizER Contains the software synthesizer class, which generates the
code output. This is probably where most of the modifications will be
done.

Ticep  Contains the xmL parser. It is highly recommended that this module is
left untouched as it is provided by a third party and highly dependent
upon by the Graphmt parser.

Toors Contains common miscellaneous tools used by the other modules.
If the developer discovers that the same method is defined across
multiple classes, it should be declared once within this module and
the affected classes refactored accordingly.

Each module has its own makefile which is called when it is built. The file
needs to be augmented whenever new CPP files are added to a module, but
other than that they should never need to be modified.

A.3.1  How to extend the process type support

For a new process type to be supported, three modules must be modified:

m  Frontend,

m  Forsyde, and

m  Synthesizer.

First, a new process type class must be created. The new class must inherit
from the Process base class and implement the necessary methods (consult
some already defined process types for examples).
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Once implemented, the frontends must be changed such that the new
process type is recognized and parsed correctly. How this is done depends on
the frontend implementation, but for the Graphmr parser it is sufficient to
add an additional case to the switch statement in the generateProcess method
(if the process type requires some additional parameters, the change is more
complex).

The last modification is done in the synthesizer module. In the gener-
ateProcessExecutionCode method, add an additional else-if statement with
the appropriate Boolean check. Although the process execution code could
be added directly in the generateProcessExecutionCode, it is recommended
that the same code convention is followed. Hence a new process execution
function should be created, named appropriately (e.g., if the process type
is named NewProcSY, the function is named generateProcessExecutionCode-
ForNewProcSY). Consult some already defined process execution function for
more information.

Once all these steps have been performed, the component need to be
recompiled. It is highly recommended that the component is cleaned first and
built from scratch.
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