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Preface

This thesis is intended to summarize the learning outcomes and some works done by
me during the undergraduate period in south university of science and technology of china
(SUSTCQ). In this thesis, I choose two topics, one is related to algebraic number theory and
the other one is something about function fields. The central idea or tool is the Galois theory,
which connects the two part for this paper. For the number fields part, I have rearrange many
references and books in order to give a simple and clear skeleton. For the function fields,
we prove an explicit theorem, which is useful for studying the discrete (finite) subgroups
of the automorphism group of a function field.

Before the main contents of the thesis, I would like to take some words for my pro-
cess on studying mathematics during the time in SUSTC. Although there is no mathematics
department for our newly established university, I am grateful that I have learn many math-
ematics, especially abstract algebra, algebraic number theory and algebraic geometry from
Prof. Xianke Zhang, and Prof. Jietai Yu in the University of Hongkong etc.

As a student who loves mathematics very well, I have met so many kindly and re-
sponsible mathematicians during my 3.5-years’ college life. During the first two years, as
the representative of mathematics lessons in our inaugural class across all majors, I have
“obligation” to get good grades on mathematics lessons in order to set a good example. |
learned Calculus and Analysis from Prof. Xuefeng Wang in mathematics department of
Tulane University, Prof. Jinzhong Zhang in Guangzhou University, Prof. Zhongkan Liu
in SUSTC and Beihang University, who is my first supervisor. We had frequent discus-
sions on some topics on analysis as well as many other topics like elementary geometry
and ordinary differential equation etc.

After entering financial mathematics department, I also learned ordinary differential
equation, probability, stochastic process, numerical methods, as well as some statistics from
the professors in the department. Among of them, Prof. Anyue Chen, Prof. Jingzhi Li, Prof.
Xuejun Jiang, Prof. Huaiqing Wang, Prof. Dejun Xie and Prof. Bianxia Sun gave me so
many supports. Especially, Prof. Li, as my graduation designation supervisor, encouraged
me a lot on studying algebra, and helped me to know some good mathematician friends of
him.

Prof. Xianke Zhang, supervisor of me (after Prof. Liu) and an academic supervisor of
this thesis, has guided me into the world of abstract algebra, a field which is quite abstruse
for freshman. However, I found appealing thing inside the abstract definitions and com-
plex relations one day. After that, besides the formal classes, we held several seminars on

algebraic number theory and commutative algebra etc under the guidances of Prof. Zhang.
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Prof. Jietai Yu who has inspired me on Galois theory and algebraic geometry, has
given me many guidances on research area as well as daily life. He gave us Galois courses
as well as seminar on algebraic geometry. Among that time, I had my first opportunity to
give a presentation in the formal seminar. I still remember the topics for that seminar is the
finite subgroups of PGL(2, C) (we will show the relevant topic in chapter 8). What’s more,
Prof. Yu found more opportunities for me to learn more mathematics as well as to further
my study.

During those experiences outside the campus, I have learnt more recent works on
affine algebraic geometry. The happiest things for me during those academic activities are
finding many good friends, like Swapnil Lokhande, Sagar Kolte, Shameek Paul, Shihong
Ma, Ju Huang, Haifeng Tian etc. They really gave me so much encouragement and concern.
Also, I also met many good mathematician, like Prof. Alexey Belov, Prof. Leniod Makar-
Limanov, Prof. Wenhua Zhao, Prof. Fang Li, Prof. Xiankun Du and so on. They gave me
some instructions on some problems and encouraged me on studying mathematics.

Last but not least, I’ve come to realize that the ability of self-study is the most important
good properties for a university student. I have paid much time to learn something outside
the courses, to find some interesting topics, to sort out learning knowledge. During these

years, | wrote a personal mathematics blog to record those things.

Wenchao ZHANG
September, 2014 at SUSTC
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ABSTRACT

We have two parts in this thesis. In the first part, we study the structure of cyclic
sextic field with many details on its subfields: quadratic field and cyclic cubic field. We
reorganize main theory of algebraic number theory and some recent references on cyclic
cubic field and cyclic sextic field. Based on these results, we solve the integral basis of
the cyclic sextic field as well as find the prime decomposition algorithm. Precisely, we
give some examples applying our results. For example, we solve discriminant, integral
basis, prime decomposition of 7-cyclotomic field. We also compute its unit group and
class number using general theory. We also give an example for real cyclic sextic field.
Using linear resolvent method, we first determine that the minimal polynomial has Galois
group Cy. Then we also find the quadratic subfield and cyclic cubic subfield in order to get
the integral basis and prime decomposition. We compute the class number as well.

The general results for integral basis and prime decomposition of cyclic sextic field
are given by structures of its subfields based on its discriminant which is computed through
analytic number theory’s method.

In the second part, we discuss Galois extensions of a function field. In the classical
theory of algebra and algebraic geometry, Liiroth’s theorem reveals that any intermediate
field E/K of K(z)/K (where x is transcendental extension over K) is a simple exten-
sion. More precisely, assuming that K (z)/FE is Galois, without using Liiroth’s theorem,
we prove that £ = K (u), where u € K () can be determined by the elementary symmetric

polynomials. We then give a classical example for Gal(K (z)/E) = Ds.

Keywords: Galois Theory,Cyclic Sextic Fields, Integral Basis, Prime Decomposition,

Liroth’s Theorem
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rational integer ring
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Chapter 1 Introduction

Formally, there are 2 parts and 8 chapters in this thesis. The first 4 chapters, namely
chapter 2-4, mainly refer to some reviews for Galois theory and Algebraic Number theory
etc. In chapter 6-8, we obtain some results on cyclic sextic fields and Galois extensions of
function fields. And then, we also give some examples using our consequences.

Algebraic Number Theory and Algebraic Geometry are two central researching fron-
tiers of pure mathematics. To find the discriminant, integral basis, class number of a alge-
braic number field is a classical question in algebraic number theory. More accurately, if
we consider the splitting field of the polynomials over QQ, which is certainly Galois, then
some restrictions from Galois extension will affect the structures of the field. Igor Sha-
farevich showed that every finite solvable group G is realizable over Q, i.e. there exists a
field K such that Gal(/K/Q) = G. This is related to a famous question, the Inverse Galois
Problem. For our cases, we focus on some simple cyclic fields which have cyclic group as
its Galois group over Q.

We introduce Galois theory in chapter 2. The Galois theory is the principal connection
between the two parts of the thesis. In chapter 2, we will first introduce some necessary
preliminaries of Galois Theory for our results based on Emil Artin’s book [1] and David A.
Cox’s book[2]. Then, we focus on computing the Galois group of a polynomial. We sort
out some useful materials from A. Healy [3], C. Bright [4], and L. Soicher and J. McKay
[5].

One will find that chapter 3-5 have almost the same content’s structure, i.e. we have
several common sections like the discriminant, integral basis, decomposition of prime, unit
group and class number and so on. In fact, Chapter 3 is the reviews of general theory for
number fields and some analytic number theory. We have paid much time on sorting out the
materials from books of Prof. Xianke Zhang [6], Henri Cohen [7] and Richard Molin [8].
In chapter 4 and 5, we have clearly rearranged those results for quadratic field and cyclic
cubic field based on Cohen and Zhang’s books. Some of results has been modified for the
simplicity. In chapter 5, we have posed an example for prime decomposition in cyclic cubic
field and two examples for computing the class number of those fields. What’s more, we
have recovered the results of Seidelmann’s paper [9] through a lemma in Cohen’s book.
We also give a formula (See theorem 5.7.1) for a type of cyclic cubic field which is given
risen by the ideas of F.C. Orvay’s [10].

In chapter 6, we first refer to Sirpa Méki’s results [11] on discriminant and conductor
of a cyclic sextic field, and then get the integral basis and prime decomposition of it. Méki
give a direct result for discriminant, we have tried to recover the result to get it using the

conductor-discriminant formula. Then with this message, we complete to find the integral

1
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basis of cyclic sextic field. At section 6.2, we succeed in obtaining all the cases for decom-
position of prime numbers. For real cyclic cubic field, the unit group and class number has
been solved for some “small” (actually is quite large) discriminants, we can find a table in
Maiki’s book. For complex cyclic sextic field, it’s a CM-field, hence the class number and
the unit group could be reduced into its cyclic cubic field. But unfortunately, we haven’t
got the final precise results of them.

In chapter 7, we give two examples. One of them is a complex cyclic sextic field
and the other is a real cyclic sextic field. For this a complex cyclic sextic field, i.e. 7-
th cyclotomic field, we use our results in chapter 6 to get its discriminant and the prime
decomposition, integral basis. Then we verify those results through the theory of cyclo-
tomic field. Since this field is quite simple, we use the general theory of class number to
find its class number is 1. Then, we also given an inconspicuous example. We first verify
the Galois group of the polynomial using the method in chapter 2, then we first compute
the polynomial discriminant. After that, using the discriminant formula, we confirm the
subfields of it, and also do other processes as we mentioned above except the unit group.
We also find another example proposed by A Bremner and B Spearman[12] with sextic
trinomial, but unfortunately, we haven’t got the final results.

Although there is only one chapter for part two, i.e. the Galois extensions in a function
field, this is still an important part of my thesis. We have proved two theorem for special-
izing Liiroth’s theorem within Galois extension. More precisely, assuming that K (z)/FE is
Galois, without using Liiroth’s theorem, we prove that £ = F'(u), where u € K (x) can be
determined by the elementary symmetric polynomials. We then give a classical example
for Gal(K (z)/E) = Ds.
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Chapter 2 Galois Theory

Galois Theory, named after Evariste Galois, is a useful tool to provide a connection
between field theory and group theory. From the fundamental theorem of the Galois the-
ory, we could find that the certain problems in field theory can be reduced to group theory,
which is in some sense simpler and better understand. Originally, Galois used permuta-
tion groups to describe how the various roots of a given polynomial equation are related
to each other. The modern approach to Galois theory, developed by Richard Dedekind,
Leopold Kronecker and Emil Artin, among others, involves studying automorphisms of
field extensions. In this chapter, we will introduce some basic theory of Galois theory and

an application of it.

2.1 Galois Extension

For simplicity, we skip the theory of group and some basic definition of field. A field
K containing a field £’ is called an extension field of F'. Such an K can be regarded as
an F-vector space, and we write [K : F| for the dimension, which we called degree of the
extension.

Consider fields K /F, we say the extension K /F is algebraic if for any o € K is
algebraic over K, i.e. every element of K is a root of some non-zero polynomial with
coefficients in F'. The field extensions that are not algebraic are called transcendental.

we say an algebraic field extension K/ F' is separable if for every a € K, the minimal
polynomial of « over F is a separable polynomial, i.e., has distinct roots. For F'is char-
acteristic 0, any algebraic extension is separable. Also, for any finite field, any algebraic
extension of it is separable.

A splitting field of a polynomial p(.X) over a field F is a field extension K /F' which
p factors into linear factors and such that the roots generate K over F. We say an algebraic
field extension K/ F'is normal if K is the splitting field of a family of polynomials in F'[z].
Or equivalently, every irreducible polynomial in F'[X] that has one root in K, has all of its
roots in K.

An F'-isomorphism K — K is called an F'-automorphism of K. The F'-automorphisms
of K form a group, which we denote Aut(K /F').

The normal extension K /F is also equivalent to that every embedding (i.e. injective

ring homomorphism) o of K into F'° is an automorphism of K over K.

Definition 2.1.1 (Galois Extension). A4 finite extension K of F is said to be Galois if K | F
is both separable and normal. The F'-automorphisms of K is called the Galois group of K
over F, and it is denoted by Gal(E/F).
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An important theorem of Emil Artin [1] states that for a finite extension K /F, each

of the following statements is equivalent to the statement that £/ F' is Galois:

Theorem 2.1.1 (Artin). For an extension K | F, the following statements are equivalent:
1. K is the splitting field of a separable polynomial | € Fx].
2. F = K€ for some finite group G of automorphisms of K.
3. K is normal, separable and of finite degree over F.

4. K/F is Galois.

2.2 The fundamental theorem of Galois theory

We then call the fundamental theorem of Galois theory which is the central theorem
of Galois theory.
Theorem 2.2.1 (The fundamental theorem of Galois theory). Let K/ F is Galois, and G =
Gal(K /F). The maps H — K" and M — Gal(K /M) are inverse bijections between the

set of subgroups of G and the set of intermediate fields between K and F. Moreover, we
have

1. the correspondence is inclusion-reversing.
2. indexes equal degrees: (H, : Hy) = [K"2 : K1)
3. cHo ' < oM

4. H is normal subgroup of G if, and and only if, K is normal over F, in which case

Gal(K" /F) =~ G/H.
2.3 Galois Groups of Polynomials

If the polynomial f € F'[z] is separable, then its splitting field F; is Galois over F', and
we call Gal(F/F) the Galois group G of f. From now on, we just consider the simplest
case, i.e. [' = Q, and we denote Gal(f) = Gal(Q;/Q). Then, any splitting field Qy is
Galois over Q.

A well-known theorem is that the roots of f are solvable in radical if only if Gal(f)
is solvable, which provides some motivation as to why the Galois group of a polynomial is
of interest.

Let f be a univariate polynomial with rational coefficients. Throughout this article we
suppose that f has degree n and roots 71,79, ..., 7,. The splitting field Q; of f, denoted
by Q(r1,...,7,), is a finite extension of Q generated by the roots of f. Then the Galois
group of f is defined to be

Gy = Gal(f) = Gal(Q(r1,...,7,)/Q).
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Observing that the splitting field Q of a monic polynomial f(x) with rational coeffi-
cients can be change into a splitting field of a monic polynomial with integer coefficients.

Now we use some words to explain it. Let
fx)=a"+ap 12" '+ + a1z + ao,

where a; € Q,7 =0,...,n — 1. Assume the greatest common divisor of the denominators

is d, then a; = b;/d, where b;,d € Z,i =0, 1,...,n — 1. Hence, we have
T\ (T\" by g\l bo
f(ﬁ)‘(d)+ d <d> LR

It’s clear that the splitting fields of f(z) and g(z) := d" f(%) coincide. More precisely, we

Whence,

called f(z) is equivalent to g(x) (resp. G is equivalent to G ) up to scaling.

If f(z) € K|x] is a separable irreducible polynomial of degree n and G is its Galois
group over [, then the group Gy can be embedded into S,, by writing the roots of f(x) as
ry,...,r, and identifying each automorphism in the Galois group with the permutation it
makes on the 7;’s.

In S,, we have the alternating group A,, C S, the following result is famous to deter-
mine the Galois group of the polynomial:

Theorem 2.3.1. Let K = Q(60) be a number field of degree n, where 0 is an algebraic

integer with f(x) be a minimal polynomial, then Gy C A, if and only if Disc(f) is a
square.

2.4 Dedekind’s Criterion

A theorem of Dedekind [13] which provides useful information about Gy over Q.

Theorem 2.4.1 (Dedekind’s criterion). Let f(x) € Z[x] be a monic irreducible polynomial
of degree n. Put f,(x) = f(z) mod p. Suppose f,(x) is a product of monic irreducible
polynomials of degrees ny,na, ..., n, in F,x], where ny +ny + --- +n, = n. Then Gy
is a subgroup of S, which contains a permutation permuting the roots with cycles type
(ny,ng, ..., n.).

From the theorem, we should know first that f(x) is irreducible over Q. Irreducibility
can be read off from the factorizations, since a factorization over (Q can be scaled to be a
(monic) factorization over Z. then if we have linear factor in Z[z], then of course, we have
linear factor in Z,[z].

It is important to remember that Dedekind’s theorem does not correlate any informa-
tion about the permutations coming from different primes. We don’t know the exact roots

which permuted by the cycles.
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2.5 Computing Galois Group of a Polynomial

Galois groups are not easy to compute. As Galois says in the “Discours Preliminaire”

to his first memoir on Galois theory [2]:

If now you give me an equation that you have chosen at will, and about which
you want to know if it is or is not solvable by radicals, I cannot do any more
than indicate the means for answering your question, without wanting to charge
either myself or any other person with doing it. In a word, the calculations are

impractical.

Even with the aid of modern computers, it is not easy to compute the Galois group of
a polynomial of large degree unless the polynomial has some special structure. We will
introduce some ways of computing Galois groups of arbitrary polynomials.

Throughout the method of Dedekind’s criterion, one can only determine whether the
Galois group of a polynomial with degree n in Q] is to be S,, or A,, or not. For more
results on that, one can refer [13] etc.

The following Resolvent Method has developed by L. Soicher and J. Mckay etc. can
be useful to compute the Galois group of the polynomial. This method was first described
by Jordan[14] in 1870, and improved by L. Soicher etc.[5] who raised the linear resolvent
polynomial method to computing the Galois group of a polynomial. We note two immediate
consequences. First, f is a separable polynomial, i.e., it has distinct roots. Second, Gal( f)
is a transitive group, i.e. for all r; and r; there is some o € Gal(f) which sends r; to r;.

To using this method, we should first know some definitions. The orbit of a polyno-
mial p € R[xq,...,z,| under S, is the set of polynomials that p can be sent to by permuting
the x;, and this is denoted by orb(p).

Note that, this definition can be thought of as measuring “how close” a polynomial is
to being symmetric. For example, orbp has the smallest situation, i.e. orb(p) = {p}, then
we have p fixes any permutation, hence p is symmetric polynomial.

The most important definition for the method is resolvent polynomial, here comes to

our definition:

Definition 2.5.1. The resolvent polynomial is defined in terms of two polynomials f € Z[z|

and p € L[z, ..., x,] to be the new univariate polynomial
Rpaf(y) = H (y_pi(rlw‘wrn))
pi€orb(p)

In particular, a resolvent polynomial R, s, where p = e;z1+- - -+e,2, € Z[z] for some
r,1 <r <mn,andey,--- ,e, nonzero integers, is called a linear resolvent polynomial.
Since the resolvent is defined with respect to the orbit of p it is symmetric in the 7;,

1.e. permuting the 7; will permute the roots of R, ; but does not change 2, s itself. i.e. the

6
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coefficients of 17, ; are symmetric polynomials of rq, ..., 7,, and the by the fundamental
theorem of symmetric polynomials can be written in terms of the elementary symmetric
polynomials in 7y, ..., r,. However, the elementary symmetric polynomials in 7, ..., 7,
are exactly the coefficients of f, therefore integers. Hence, R, s € Z[y] providing p €
Zlzy,...,x,] and f € Z[x].

For larger degree polynomials, it’s hard to get the resolvent. However, computer be-
comes to our useful tool for computing coefficients of R, ; from above property. We can
first approximate the roots of f via numerical root-finding methods, form all combina-
tions of the roots as specified by p, and then expand the product from the definition to find
approximations of the coefficients of R, ;. Since the coefficients are integers, if the ap-
proximations are known with sufficient accuracy then the approximations may simply be
rounded to the nearest integer.

The action by o € Gal(f) on the roots of R, ; actually gives Gal(R, f). More pre-
cisely, let ¢ : Gal(f) — Gal(R, ;) be defined so that ¢(o) is the action by ¢ on the roots

of R, ;. Formally, a proposition which can be found in Cohen’s book [7] is the following:

Proposition 2.5.1. If the roots of R, s are distinct then Gal(f) = ¢(Gal(R, f)).

As mentioned before, to use the above theorem we require that R, ; have distinct roots,
however it will not always be the case. The Tschirnhausen transformation is an algorithm
to get rid of this problem. For more information, one can refer to Cohen’s book [7].

The linear resolvent method (together with recognizing squarefree of the discriminant
of the polynomial, i.e. determined the Galois group is a subgroup of A,, or not) can be
applied for polynomial up to degree 7 [5]. One can find a table from L. Soicher and J.
McKay’s work [5]. In additional, we repose some parts of this table in Appendix A, see
table A.1.
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Chapter 3 Algebraic Number Theory

Algebraic number theory is a major branch of number theory that studies algebraic
structures related to algebraic integers. Usually, it studies algebraic properties of the al-
gebraic integers’ ring such as factorization, the behaviour of ideals, and field extensions.
In this chapter, we will introduce some definitions and useful results in algebraic number

theory as well as some preliminaries of analytic number theory based on [6-8].

3.1 Algebraic Numbers and Number Fields

We first give the necessary background on algebraic numbers, number fields etc. Let
a € C. Then « is called an algebraic number if there exists f(z) € Z[z]|/0 such that
f(a) = 0. The number « is called an algebraic integer if, in addition, one can choose f
to be monic.(i.e. with leading coefficient equal to 1).

More generally, we can define the integral element of a ring(See [6]) through similar
definition.

A number field is a field containing Q which, considered as a Q-vector space, is finite
dimensional. The number d = [K : Q] = dimgXK is called the degree of the number field
K.

The signature of a number field is the pair (71, 75) where 7 is the number of embed-
dings of K whose image lie in R, and 275 is the number of non-real complex embeddings,
so that r; 4+ 2ry = n. If T'is an irreducible polynomial defining the number field K by one
of its roots, the signature of K will also be called the signature of 7.

The following proposition [7] shows that there are only two possibilities for the sig-

nature of a Galois extensions.

Lemma 3.1.1. Let K be a Galois extension of Q of degree n. Then, either K is totally real
(r1 = n),or K is totally complex (ro = n/2) which can occur only if n is even.

3.2 Discriminants of Elements and Fields

The definition of discriminants of polynomials can be found in the Appendix B if need
some reviews, now we will introduce the definition of discriminant of elements and fields.
Let K be a number field of degree n, o; be the n embeddings of K into C, and «; be the

set of n elements of K. Then we have
DiSC(Ozl, . ,Oén) = det(ai(aj))2 = det(TrK/@(aiozj))
In particular,If X' = Q(«), f(x) is the minimal polynomial of «, then

Disc(f) = Disc(a) = Disc(1,...,a" ")
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we denote by Ok the ring of algebraic(rational) integers of K. Then we have that the
ring O is a free Z-module of rank n = deg(K). Hence we can define the (absolutely)
integral basis as follows:

Definition 3.2.1. 4 Z-basis of the free module Og will be called an (absolutely)integral
basis of K. The discriminant of an integral basis is independent of the choice of that basis,

and is called the discriminant of the field K and is denoted by d(K).

Similarly, we can define a relatively integral basis: Let A be a commutative integral
domain with 1, K = Frac(A),L/K is an extension with [L : K| = n, B is the integral
closure of A in L. If B is a free A-module , i.e. B = Aa; @ --- ® Aa,,. Then we call
aq, ..., a, the A-basis of B(resp. integral basis of L./ K.) Then we have

Disc(L/K) = (Disc(ay, ..., ay)),

which is the discriminant of L/ K.
Then, we will show a important theorem [8] regarding the relationship of the discrim-
inant of the minimal polynomial and the discriminant of the field.

Lemma 3.2.1. Let T be a monic irreducible polynomial of degree n in Z|x], 6 a root of T,
and K = Q(0). If [ =[Ok : Z[0)], then

Disc(T) = d(K) f*.

The number f is called the index of § in Of. A theorem for recognizing the integral
basis of a field is important. Moreover, we have general results for relative integral basis
[6]. The following proposition has combined these two cases.

Proposition 3.2.1. The algebraic numbers o, . . . , o, form an integral basis if and only if
they are algebraic integers and if Disc(av, . . ., ) = d(K). More generally, if L/ K has
integral basis, then By, . . ., B, € Bform an integral basis if and only if (Disc(B1, - -+ , Bn)) =
Disc(L/K).

The result related the structure of discriminant of a field due to Stickelberger can not
be avoid when we talking about discriminant here:
Lemma 3.2.2 (Stickelberger’s criterion). Let K be a number field, then

d(K)=0or1(mod4)

The determination of an explicit integral basis and of the discriminant of a number

field is not an easy problem, and is one of the main tasks of this article. However one case
in which the result is trivial:
Corollary 3.2.1. Let f be a monic irreducible(i.e. minimal) polynomial in Z|x), 0 a root of
f, and K = Q(0). Assume that the discriminant of f is squarefree or is equal to 4d where
d is squarefree and not congruent to 1 modulo 4. Then the discriminant of K is equal to the
discriminant of f, and an integral basis of K is given by 1,0, ... 0" 1.

Finally, the result to determine the sign of discriminant is useful:

Lemma 3.2.3. Let K be an algebraic number field, then
d(K) = (=1)"]d(K)]

10
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3.3 Decomposition of Prime Numbers

For simplicity, we continue to work with a number field K considered as an (finite)
extension of (Q, and not considered as a relative extension. Many of the results which are
explained in that context are still true in the more general case, but some are not. Almost
always, these generalizations fail because the ring of integers of the base field is not a
PID(Dedekind). The main results concerning the decomposition of primes are as follows:

Proposition 3.3.1. Let p be a prime number, then there exist positive integers e; such that
g
pOx = H @fiv
i=1

where @, are all the prime ideals above p, i.e. p; N 7 = pZ.

The integer e; is called the ramification index of p at p; and is denoted e(g;|p). The
degree f; of the field extension defined by

fi=[Oxk/pi: Z/pZ)]

is called the residue degree of p and is denoted f(gp;|p). ¢ is called the decomposition
number of p in K.
There is an important relation between these coefficients, which comes to a theorem.

Proposition 3.3.2. Let [K : Q| = n, then for any p, the decomposition in Theorem 3.3.1

satisfies
g

Z eifi = n.

i=1

Let pOx = [[{_, pi' be the decomposition of a prime p. We will say that p is inert if
g=Tlande; = l,i.e. pOx = p;. We will say that p splits completely if ¢ = n. Finally, we
say that p is ramified if there is an e; which is greater than or equal to 2 (in other words if
pOg is not squarefree), otherwise we say that p is unramified. Those prime ideals p; such
that e; > 1 are called the ramified prime ideals of Ok. In particular, if e; = n, then we say
that p ramifies totally.

From the definitions of these ramification index and decomposition number satisfy
chain rule, which is a very important message for us to decompose prime number in a
compositum of fields.

In the case when K /Q is a Galois extension, the result is more specific: Assume K /Q
is a Galois extension. Then for any p, the ramification indices e; are equal, the residual
degrees f; are equal as well, hence e f¢g = n. In addition, the Galois group operates tran-
sitively on the prime ideals above p: i.e. there exists o € Gal(K), such that o(p;) = p,.

The existence of ramified prime has showed by Minkowski: If K is a number field
different from Q, then |d(K)| > 1. In particular, there exists at least one ramified prime in

K. What’s more, the fundamental ramification theorem([7] is as follows:

11
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Proposition 3.3.3. Let p be a prime number, then p is ramified in K if and only if p divides
the discriminant d(K). In particular, there are only a finite number of ramified primes
(exactly w(d(K)), where w(x) is the number of distinct prime divisors of an integer x).

On the contrary, for unramified prime, we have another theorem given by Stickel-

berger[7].

Proposition 3.3.4 (Stickelbeger). If p is an unramified prime in K with pOx = [[_, pi,

we have
(“5) — s

p
forp =2, (d—K)) = (—=1)""9 is to be seen as the Jacobi-Kronecker symbol(See Appendix

We now consider a more difficult algorithmic problem, that of determining the de-
composition of prime numbers in a number field. The basic theorem on the subject, which
unfortunately is not completely sufficient(but right for Dedekind domain with power inte-

gral basis, even for without essential factor), is as follows.

Proposition 3.3.5 (Kummer). Let K = Q(0) be a number field, where 0 is an algebraic
integer, whose minimal polynomial is denoted T (x). Let [ be the index of 0, i.e. from
definition f = [Og : Z[0]]. Then for any prime p not dividing f on can obtain the prime
decomposition of pOy as follows. Assume

g

T(x) = HTZ(x)e (mod p)

i=1

be the decomposition of T' into irreducible factors in F,[x], where the T; are also monic.
Then

g
pOx = [ [ 9,
i=1
where
o = (p, Ti(0)) = pOx + Ti(0) Ok

Furthermore, the residual index f; is equal to the degree of T;.

3.4 Units and Ideal Classes

Let K be a number field and Oy be the ring of integers of K. We say that two (frac-
tional) ideals” I and J of K are equivalent if there exists o € K* such that J = aJ. The
set of equivalence classes is called the class group of Ok and is denoted C(K).

Since fractional ideals of O form a group it follows that C(K) is also a group. The

main theorem concerning C'(K) is that it is finite.

"Fractional ideal I in O is a non-zero sub-module of K such that there exists a non-zero integer d with dJ ideal of
Ok.

12
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For any number field K, the class group Cl(K) is a finite Abelian group, whose car-
dinality, called the class number, is denoted h(K'). Note that h(K) = 1 if and only if Ok
is a PID(UFD).

Denote by I(K) the set of fractional ideals of K, and P(K) the set of principal ideals.

We clearly have the exact sequence:
1—P(K)—I(K)— Cl(K)— 1.

The set of units in A form a multiplicative group which we will denote by U(K).
Units are algebraic integers of norm equal to =1. The torsion subgroup of U(K), i.e. the
group of roots of unity in K, will be denoted by p(K).

It is clear that we have the exact sequence:
1-UK)— K*— P(K)—1.
To sum up above two sequence, we have new exact sequence as follows:
1-UK)—> K*— PK)—=I(K)—CI(K)— 1

The main result concerning units is the following theorem:

Proposition 3.4.1 (Dirichlet’s Unit Theorem). Let (ry, ro) be the signature of K, then U (K)
is finitely generated Abelian group of rank r1 4+ ro — 1. i.e. we have a group isomorphism:

U(K) 2 p(K) x zmtret
and j(K) is a finite cyclic group.

If we set r = r; + ro — 1, we see that there exist units wuq, . .., u, such that every

element = of U(K) can be written in a unique way as

Ny
T o)

r=Cuu

where n; € Z and ( is a root of unity in K.Such a family (u;) is called a system of funda-
mental units of K.

A very important property is the number is finite, what’s more, like we claimed before,
the ideal class group for any number field is a finite Abelian group. As for the class number,
we can give a certain upper bound of it. First of all, we give the definition of Minkowski
bound [8]:

Definition 3.4.1. If K is a number field, the quantity
4\" n!
Ce=(2) SV
T) n

is called the Minkowski’s bound, where d(K) is the discriminant of K and [K : Q] = n
with signature {ry,75}.

13
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The following lemma [8] will give us a useful method to determined the class number
and class field for n = [K : Q] is small.

Lemma 3.4.1. Any ideal class of a number field K has an (integral) ideal I, such that

N(I) < Ck

From this lemma, we can also get the so-called Hermite’s theorem on discriminant:
There are only finitely many number fields having a given discriminant d.

In fact, we have a following method to determined the class number and class group”
Firstly, we should calculated the Minkowski’s bound of the number field K. From the
lemma, we can find all rational primes that p < Ck. Given the prime decomposition of
pOk, then we can compute all prime ideals p over p. Hence the class group CI(K) is
generated by A = {[p]|p|p < Ck}, where [p] is the ideal class which p lies in. If A is not
so big, the we can consider the multiple relationship between its elements, then we can get

the class group and class number.

3.5 Character and Conductor

A character on a group G is a group homomorphism from G to the multiplicative
group of a field( usually complex numbers field). The set G of these morphisms forms an
abelian group under pointwise multiplication. Sometimes we only consider unitary char-
acters, thus the image is in the unit circle.

Now we consider the special character we mentioned above, Dirichlet character,

which is defined as follows:

Definition 3.5.1. 4 Dirichlet character is any function x from the integers Z to the complex
numbers C such that x has the following properties:

1. the function is periodic, i.e. Ik € Z*, s.t. x(n) = x(n + k), Vn.
2. Ifged(n, k) > 1, then x(n) = 0, if ged(n, k) = 1, then x(n) # 0
3. x(mn) = x(m)x(n) for all integers m,n.
The Dirichlet character has following properties: from the definition, we can directly

get x(1) = 1, the character is periodic with period k, we say that y is a character to the

modulus k. i.e. we have
a=b modk = x(a) = x(b)

If ged(a, k) = 1, then from Euler theorem, we have a®®) =1 mod k, therefore we have
x(a®®)) = x(1) = 1, on the other hand, x(a®®) = x(a)?*). i.e. for all a relatively prime
to k, x(a) is a ¢(k)-th complex root of unity.

14
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A character y is said to be odd if x(—1) = —1 and even if x(—1) = 1. A character
is called principal if it assumes the value 1 for arguments coprime to its modulus and
otherwise is 0. A character of the (Abelian) field can be viewed as the character of the
Galois group of the field.

For example, the character of a quadratic field K is K = {1, x} (see [6] etc.). the
character y is the same to the Legendre-Kronecker symbol (See Appendix C).

Then, we will introduce the conductor. Taking as base the field of rational numbers,
the Kronecker-Weber theorem 7.1.2 states that an algebraic number field K is abelian over
Q if and only if it is a subfield of a cyclotomic field Q((,). The conductor of K is then
the smallest such n.

we can also define a conductor of character, i.e. the conductor of a character is the
smallest modulus of x, More precisely, the conductor of a Dirichlet character x modulo % is
the smallest positive integer ko which divides k£ and which has the property that x(n+kq) =
x(n) for all n. For this case, the x is called the primitive character of conductor (or
modulus) f,.

The relation between the conductor of characters and Abelian number field is that,
the conductor f of the field K is the least common multiple of conductor of character for

Galois group of the Abelian number field, i.e.

f = lcmxef({fx}'

For example, for real quadratic field, f is the fundamental discriminant of the field.
For cyclic cubic field, f is actually e in Theorem 5.2.2, i.e. the arithmetic square root of
the discriminant of the cyclic cubic field.

Let p be an odd prime and K /Q a cyclic extension of degree p. Then it is well known
[11] that the conductor of K must have the form f = p®- ¢1¢2 - ¢, Wheree = 0or 2, n > 0,
and the ¢; are pairwise distinct rational primes satisfying ¢; = 1(mod p) fori = 1,2,...,n.
The discriminant of K is just a power of the conductor, dx = fP~1.

A theorem called conductor-discriminant formula related to the conductor of a field
and the discriminant of the field was first found by Dedekind. Then at the beginning of
1930’s, E. Artin and H. Hasse found this general formula (See [15] etc.) which is showed
following:

Proposition 3.5.1. Let K/ F be a finite Galois extension of global fields with Galois group

G,
d(K/F) = [ R,
x€G
since for abelian field, x(1) = 1, hence for K is an abelian number field, then we have a
special form,

d(K) = (-1 1] 1

xe@

15
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Chapter 4 Quadratic Fields

In this chapter, we are going to discover the most simplest number field that are dif-
ferent from Q, i.e. quadratic fields. Let denote it as /X'. A quadratic field is of degree 2 over
Q, it can be given by K = 0, where @ is a root of minimal polynomial f(z) = 2? + ax + b
of Z[z]. Letd = a®> — b, then K = Q(v/d). Clearly, d is not a square, otherwise f(z) won’t
be a irreducible quadratic polynomial. Since Q(v/m2d) = Q(+/d), hence we may assume
that d is squarefree.

Since n = 2 = ry + 2ry, the signature of quadratic field K is either (2,0) or (0, 1),
which is called real quadratic field or complex (or imaginary) quadratic field respectively.
It’s easy to show that the real quadratic field has positive discriminant and the complex

quadratic field has negative discriminant.

4.1 Discriminant, Integral Basis

The integral basis and discriminant of quadratic field is easy as following theorem:

Theorem 4.1.1. Let K = Q(\/d) be a quadratic field with d squarefree. Then if d =
1(mod4), we have integral basis (1, (1 + \/d)/2) with discriminant d(K) = d; if d =
2 or 3(mod 4), we have integral basis (1,/d) with discriminant d(K) = 4d.

Let us denote D = d(K) (namely fundamental discriminant) for these two cases, then
we can see that it satisfies Stickelberger’s criterion 3.2.2. What’s more, K = Q(v/D) has

integral basis (1,w), where

and therefore O = Z[w].

4.2 Decomposition of Primes
Note that Proposition 3.3.1 and Proposition 3.3.5 immediately shows how prime num-

bers decompose in a quadratic field [6].

Theorem 4.2.1. Let K = Q(\/E), where D is the fundamental discriminant, i.e. D =
d(K), Ox = Z|w] where w = (D + /D) /2 its ring of integers, and p be a prime number:
Then"

1. If(%) = 0, then p is ramified, i.e. pOx = *. More precisely,
P = pOK + CUOKv

except when p = 2 and D = 12(mod 16).

’ (%) is Kronecker symbol which can be seen in Appendix C.

17
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2. If(%) = —1, then p is inert, hence pOy = p is a prime ideal.

3. If(%) =1, then p is split, and we have pOg = @12, Where

D+b
0 =pOxk + (w— T)OK’

and b is any solution to b* = D(mod 4p)

4.3 Unit Group of Imaginary Quadratic Fields

First we consider the unit group of quadratic field, by the Dirichlet’s Unit theorem
3.4.1, we can divide the quadratic field into two cases. The imaginary quadratic field has
simple unit group since r = r + r, — 1 = 0, i.e. the unit group is finite. In fact, the
imaginary quadratic field is the only number field apart from Q@ who has finite units. A
theorem for the unit group of Imaginary Quadratic fields could be found in [6, 7] etc.:

Theorem 4.3.1. Let K = /D, where the fundamental discriminant D < 0, then the group
U(K) = u(K) of units is equal to the group of w(D) — th roots of unity, where

2, ifD< -4
wD)=<¢ 4, ifD=—4
6, if D=-3

4.4 Class number of Imaginary Quadratic Fields

Let us now consider the problem of computing the class number of imaginary quadratic
field. Here we give a beautiful result from L-function. Since it’s to far to enter into the
details of the analytic theory of L-functions, so we just recall the results. Our main result
is a corollary of Dirichlet’s Theorem (We have reorganized this theorem to fit all imaginary

quadratic number field. In the original theorem, it just states ) < —4 cases.) [7].
Theorem 4.4.1. If D is a negative fundamental discriminant, then
w(D) D
ME) = 5 > (—) :
4-2 (5) 1<r<|D|/2 r
where w(D) is defined in Theorem 4.3.1.
Remark 4.4.1. For D < —4, we have
1 D
=g > (%)
2/ 1<r<|D|/2
Of course, we can get h(—3) = h(—4) = 1 by calculation.
More precise list for class number can be seen in the book [6].

18
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4.5 Unit group of Real Quadratic Fields

For real quadratic fields, ZHANG [6] has given a precise algorithm to compute it
through the Pell’s equation. Since the unit circle of a real quadratic field only hits two time

real axis, then we have /K = {£1}. By Dirichlet Unit Theorem 3.4.1, we have
U(K) = {1} x €,

where € generates an infinite cyclic group (e) = €Z. There exists only one unit in the set (all
of them can generate whole infinite cyclic group) {=¢, ==¢~'} which is larger than 1, and
we denote it as fundamental unit of K. Now we just need to compute the fundamental unit.
Let K = Q(V/d), where d is squarefree. Let o = a + bv/d(a,b € Q) be unit of K, then
N(a)==1.Ifd =2 or3 mod 4, then Ox = Z[V/d]. A integer @ = x + y\d(z,y € Z)

is unit if and only if N(«) = +£1, i.e. we have following Pell’s equation:
22— dy? = +1 4.1)

From the Unit Theorem, we note that if € = a; + b;/d is a fundamental unit of K’ (ay, by >
0), then

" = (CLl + bl\/C_l)n =a, + bn\/C_l

is also a unit who larger than one. What’s more, (a,, b,) are natural number solutions of
the Pell’s equation 4.1. Note that b,,.; = a1b,, + a,,b1, hence b,, is an increasing sequence.

Let us consider b = 1,2, 3,---, if db® & 1 is a square number (i.e. a?), then we stop
the process, i.e. we find the ”smallest” solution of the Pell’s equation 4.1 and this solution

is also the fundamental unit.

Let’s consider d = 6, 6b? £ 1 is a square number firstly when b = 2, i.e. we have the
fundamental unit of Q(1/6) is € = 5 4 2v/6.

Similarly, if d = 1 mod 4, then Og = Z[HQ‘/&], an integer of K has form o =
(a + bV/d)/2, where a = b mod 2, a,b € Z. «a be unit of K if and only if N(a) =

(a* — b*d)/4 = +1, hence, (a, b) is a solution of the following Pell’s equation:

x? — dy? = +4 4.2)
ife = (a1 + b \/E)/Z is a fundamental unit of K (aq,b; > 0), then

ay + bl\/c_i)n . a, + bn\/C_i
2 N 2

=

is also a unit who larger than one. Similarly, consider b = 1,2, 3, - - -, if db? 4= 4 is a square

number (i.e. a?), then we stop the process and get the fundamental unit (a + b\/c_l) /2.
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4.6 Class Numbers of Real Quadratic Fields

Also, as in the imaginary case, using L-function, we can also get a beautiful results[7].

We have modified the results through discarding regulators.

Theorem 4.6.1. If D is a positive fundamental discriminant, then

;) (2 msin (7).

Now we see an example, let D = 4d = 8, then € = 1 + /2 by the result of unit group

h(K

of real quadratic field. From the Theorem 4.6.1, we have

(m 51n(7T) In sin(%”)> In(tan(g))

1
CIn(1++2)

hEK) = CIn(1+v2)

20



SUSTC’s Dissertation for Bachelor’s Degree

Chapter S Cyclic Cubic Fields

In this chapter, we start with a cubic polynomial with Galois group A3 = C3. A
famous work with only half page given by Seidelmann in 1917 [9] showed the condition
of the polynomial which satisfies the Galois group C'3. We have recovered the process to
get this condition with a lemma which can be found in Cohen’s book. Then we proceed to
rearrange the explicit results for cyclic cubic field based on Cohen’s book. At last, we will
propose some examples on prime decomposition and computing class number.

In additional, we have offered some special examples in the last section 5.7 for cyclic
cubic field without the standard form which we will show as follows. What’s more, we also
give a formula (See theorem 5.7.1) for a type of cyclic cubic field which is given risen by
the ideas of F.C. Orvay’s [10].

Firstly, we propose some preliminaries of cyclyc cubic field K. Let K be a number
field of degree 3 over Q, i.e. a cubic field. If K is Galois over @), with Gal(K) = As,
then K is so called a cyclic cubic field. let denote the Galois group of K be (o), where
o~ ! = 0% Note that, for cyclic cubic field K can only be totally real, based on the Lemma
3.1.1.

5.1 Cubic Polynomial and Cyclic Cubic Field

The cyclic cubic fields can be viewed as generating by cubic polynomials. let’s con-

sider a polynomial of degree 3 which has the form
f(z) = az® +br* + cx +d

where a # 0. There are two possible Galois groups for splitting field of cubic polynomial,
namely S5 and As = C}.
Now we will reduce the general cubic equation into a cubic trinomial by eliminating

the quadratic term. We begin with the general cubic with rational coefficients
3 2
ar”® +bx” +cx +d

and make the substitution r = X — % to get

b2 be 2h°
3a 3a 27a?

aX® + (c—— X——+d+
Since each of these coefficients are rational, we have now have a cubic trinomial in Q.
Also, since we are working over the rational numbers, we can easily divide by the leading

coefficient of the 23 term and obtain a monic cubic equation.
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The main distinction of cubics with a Galois group of (' is that the polynomial dis-
criminant is equal to a square in Q which is a direct corollary of Theorem 2.3.1. Seidelmann
uses this fact to give a form for the coefficients of a monic cubic trinomial with a Galois

group of (5. For p, ¢ € Q, the equation
f(z) = 2* = 3(p* + 3¢%)z + 2p(p” + 3¢°)

where f(z) is not reducible, represents all equations of degree 3 with a Galois group of Cs.

In Seidelmann’s paper (German version), there are only few rows to show the result
but without proof, so now we give a brief proof of it. We assume that K is a cyclic cubic
field. Let 6 be an algebraic integer such that K = Q(60), and let f(x) = 2 + ax + b be the
minimal polynomial of 6 as we mentioned before.

One important consequence is necessary for calculation. Since any cyclic cubic field
has at least one real embedding and since K is Galois, all the roots of f must be real(See
Lemma 3.1.1). Of course, we can get this from the square discriminant of f.

Consider the primitive cube roots of unity ¢ = €?>™/3, then it’s easy to see that K (¢)
is a sextic field over Q. What’s more, it’s also Galois with Galois group (o, 7), where o
has been defined above which fixes ¢, 7 is the complex conjugation. We first prove the
following lemma, one could find a similar lemma in Cohen’s book [7].

Lemma 5.1.1. Set v = 0 + (%0 (0) + (o*(0) € K(¢), and 8 = v*/7(7). Then 3 € Q(¢)
and we have

where e = B7(5) and u = B + ().
Proof. We have 7(y) = 6 + (o () + (?0*(0), also we can verify that

o(v) = o(8) + **(0) + ¢0 = (v

and
a(7(7)) = o () + (a*(0) + ¢*0 = ¢*1(7).
Hence, we have
o(B) =o(v*/7(7)) =7*/7(7) = B,
i.e. [ is invariant under the action of o, so by the Galois theory 5 € Q(().
Note that e and u are norm and trace of 5 in Q(() respectively, hence is rational num-

bers.
Now we have the following matrix equation:

0 1 1 1 0
v =11 & ¢ ()
7(7) 1 ¢ ¢ o?(0)
Then, we have
0 1 1 1 1 0
o(0) =3 1 ¢ ¢ gl
() 1 ¢ ¢ 7(7)
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From the formula, we have

a = 00(0) + 052(0) + o(0)0*(0) = _r)

3
and s s
b=—00(0)0*(0) = _M_
27
Note that 7(8) = 7(v*/7(7)) = 7(7v?) /v = (7(7))? /7. We can easily verify that the norm
and trace of (3 coincide e and w. [

Now since Q(¢) = Q(+/—3), we can assume that 5 = p + ¢/—3 € Q((), where
p,q € Qthene = N(B) = (p+ q¢v/=3)(p — ¢v/=3) = p* + 3¢*, u = Tr(B) = 2p, hence
we have ) ) 0 2
o3 P F3¢” - 2p(pT +3q

which is equivalent to f(z) = ® — 3(p* + 3¢*)z — 2p(p* + 3¢*) = 2> — 3ex — eu up to

scaling. (The sign of the constant term’s coefficient can be change by replace p into —p.)

5.2 Discriminant and Integral Basis

Now, for simplicity, up to suitable scaling, we use f(x) = 2> — 3ex — eu, where wlog,
we assume that e, u are rational integer. Note that then /3 can be written down an algebraic

—“+”2\/?3 ,u, v € Z. What’s more, u cannot be divisible by

integer of Q((),i.e. we have § =
3 since (3 is not divisible by the ramified prime. Hence, by suitable choosing /5 or — 3, we
may assume that « = 2(mod 3). In this notation, e = %, then e = 1(mod 3). In fact, e
is the product of distinct primes which congruent to 1 modulo 3 (including e = 1) [7]. i.e.

we have following lemma:

Lemma 5.2.1. For any cyclic cubic field K, there exists a unique pair of integer e, u such
that e is equal to a product of distinct primes congruent to I modulo 3, uw = 2(mod 3), v > 0
and such that K = Q(0), where 0 is a root of the polynomial

f(x) = 2° — 3ex — eu.
Moreover, the conjugates of 0 are given by following formulas:

—2 u4v 02

ob) = — 0+ (5.1)
2 u—v 02
o) = —+ - (5.2)

Proof. For simplicity, we just give the proof of the conjugates. Firstly, since the discrimi-
nant of 3 + ax + b is equal to —(4a® + 27b?) (Also can refer the Appendix B.0.1), hence
the discriminant of f is equal to

—(4(—3e)® + 27e*u?) = —27e*(u* — 4e) = 81le*v?.
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Then from the definition of Polynomial we have d = (6 —a(6))(o(0)—02(0))(c%(0)—0) =
+9ev. If necessary, by exchanging the o(6), 0%(6), we may assume that

9ev 9ev

O —a(9))(0 —a2(8))  f(0)

Now we should simplify this equation. Since f(f) = 6° — 3ef) — eu = 0, hence we can use
the extended Euclidean algorithm with A(x) = 23 — 3ex — eu and B(x) = 22 — ¢, then we
got the inverse of B modulo A is equal to (222 — uz —4e) /(3v?e) (note that ged(A, B) = 1
for there is no multiple roots in f(x).), hence

o) — a*(0) = = 9ev/(36% — 3e).

20% —uf) — 4
a(0) — o2() = 20" —ub —de
v
On the other hand, since the trace of 6 is equal to 0, so we have o (0) + 0%(0) = —0, we can
get the final result of o(6) and 02(6) from above equations. O

The following theorem[7] shows the integral basis and discriminant of cyclic cubic
field:

Theorem 5.2.1. Let K = Q(0) be a cyclic cubic field where 0 is a root of ¥ —3ex —eu = 0

and where, as above, ¢ = W is equal to a product of distinct primes (namely t distinct

primes) congruent to 1 modulo 3, u = 2(mod 3), then

1. Assume that 31 v, i.e. 3 is ramified in K. Then (1,0,5(0))" is an integral basis of K
and the discriminant of K is equal to (9¢)?. What'’s more, there exists up to isomor-
phism exactly 2! cyclic cubic fields of discriminant (9¢)? defined by the polynomial.

2. Assume that 3 | v, i.e. 3 is unramified in K. Then let ¢ = (0 +1)/3, (1,6',0(0")) is
an integral basis of K and the discriminant of K is equal to e*. What'’s more, there
exists up to isomorphism exactly 2! cyclic cubic fields of discriminant €* defined
by the polynomial.

For the first case, not that 62 = vo(0) + ((u +v)/2)8 + 2¢ from the result of o(6), so
the Z-module O generated by (1,6, 0(6)) contains Z[6]. So the index [Of : Z[f]] = wv.
For the second case, ie, if the prime 3 is unramified in K, then we can write the minimal
polynomial of &', i.e. #' is a root of the equation with coefficients in Z
1—e 1—-3e+eu

3 0 ar

flz) =2 —2* + (5.3)

where e = W, u = 2(mod3),u = v'(mod2),v" > 0, and e is the product of distinct
primes congruent to 1 modulo 3. For the same reason, we have [Ok : Z[#']] = v/3 = v'.
With new notation on e, u, v, Cohen’s book[7] given us another theorem as follows:

Theorem 5.2.2. All cyclic cubic fields K are given exactly once (up to isomorphism) in the
following way:

"o is given by lemma 5.2.1.

24



SUSTC’s Dissertation for Bachelor’s Degree

1. If'the prime 3 is ramified in K, then K = Q(0) where 0 is a root of the equation with

coefficients in Z,
e eu

3 .
where e = W,u = 6(mod9),3 1 v,u =v(mod?2),v > 0, and /9 is the product
of distinct primes congruent to 1 modulo 3 (could be 1).

(5.4)

2. If the prime 3 is unramified in K, then K = Q(0) where 6 is a root of the equation
with coefficients in 7.
l—e 1—-3e+eu

flz) =2 -2 + T 5 , (5.5)

where e = %,u = 2(mod3),u = v(mod2),v > 0, and e is the product of

distinct primes congruent to 1 modulo 3.

3. In both cases, the discriminant of f is equal to e*v? and the discriminant of number
field K is equal to €.

4. Conversely, if e is equal to 9 times the product of t — 1 distinct primes congruent to 1
modulo 3, (resp. is equal to the product of t distinct primes congruent to 1 modulo 3),
then there exists up to isomorphism exactly 2!~ cyclic cubic fields of discriminant €*
defined by the polynomials f(x) given in (1) (resp. (2)).

For this case, the integral basis is showed as follows.

Theorem 5.2.3. With the notation in Theorem 5.2.2, the conjugates of 6 are given by the
formulas:

1. If 3 is ramified in K,(i.e. in case (1)) then

2¢ —3vTFu, 0
HO) =F—+ ———0+—;
o (6) ¢9v+ 6v v’

2. If 3 is unramified in K,(i.e. in case (2)) then

79vi(u+2—4e)+—31}:|:(u+4) 62

() 0+ —
18v 6v v

In all cases, (1,0,0(0)) is an integral basis of K.

5.3 Prime Decomposition

Without loss of generality, we use the symbol in theorem 5.2.2 for simplicity. The
situation of the decomposition of prime number in cyclic cubic field is quite easy, from the
transitivity properties of Galois group, there are only three cases for decomposition, inert,
totally ramified, splits completely.

From the fundamental theorem of ramification, i.e. theorem 3.3.3, it follows that if
ple, i.e. p is one of the prime number (including 3) lies in e’s factorization expression, then

p is totally ramified. If p 1 e, then p is unramified, even from theorem 3.3.4, we can not
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determine the inert or splits completely. However if p 1 v, then we can use the theorem
3.3.5 to determine the prime decomposition. In fact, the result is similar to quadratic field
but change the Kronecker symbol to a cubic residue symbol, i.e. consider the congruence

2% = e(mod p) is solvable or not.(or equivalently p(*=1/3 = 1(mod p)).

If p | v, then f has at least a double root modulo p. If f has a double root, but not a
triple root, then f also has a simple root which corresponds to a prime ideal of degree 1. In
this case pOy is the product of three ideals of degree 1, i.e. splits completely. Finally, if f

has a triple root modulo p, we must apply other techniques, see Cohen’s book 6.2.5 [7].

5.4 Units and Class Number

From Dirichlet Unit Theorem, since K is a real field, hence u(K) = {£1} and we
have U(K) = {£1} x Z% A unit 7 of K is called the fundamental unit of K if and
only if {—1,7,0(7)} generate the group of units of K. From the property of units, we
have N(7) = £1. The only fundamental units are =7+, (o (7))*!, &(0?(7))*!. The

fundamental unit 7 is uniquely determined except for taking conjugates and inverses.

This fundamental system of units can be calculated by means of generalized continued
fraction algorithms by Voronoi [16], which have been interpreted geometrically by Delone
and Faddeev [17].

Harvey Cohn and Saul Gorn first give the units of 45 cyclic cubic fields of discrimi-

nants, where e is the prime congruent to 1 modulo 3 between 7 to 499.

Then, a table of class numbers and units in cyclic cubic fields with e < 4000" has been
given by Marie-Nicole Gras [18], after that Veikko Ennola and Reino Turunen [19] have
constructed an extended table for e < 16000.

5.5 Conductor of Cyclic Cubic Field

From the definition of conductor and some results in chapter 3, we can get the con-

ductor of a cyclic cubic field f3 is of the form [11]

fg_{ qoq1 " dn Z'f3jffs
91 n Z'f3|f:5

where ¢; are pairwise distinct rational primes satisfying ¢; = 1(mod 3) fori = 1,2,... n.
And the discriminant of K3 is d3 = f3.

"this e is the same to the one in Theorem 5.2.2
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5.6 Examples

In this section, we would propose some examples on prime decomposition and com-

puting class number.

5.6.1 An Example for Prime Decomposition

Example 5.6.1. Consider K = Q(0), where 0 is a root of f(x) = 2* — 93x — 124, it5 easy
to compute the discriminant of it is €* = 312 = 961, and v = 2. Hence, we have p = 31
is ramified totally in Oy, while the other special prime is p = 2, since 2 | v. Consider
f(z) = z(1+2)* mod 2, hence p = 2 is splits completely in Oy. Other prime numbers
can be determined by the Kummer s theorem 3.3.5. Note that for p = 2, this decomposition
in Fy has no meaning in Dedekind s criterion 2.4.1.

5.6.2 Some Examples for computing class group

First of all, we consider the class group of the the number field X' = 6, where 6 is a
root of f(z) = x® — 3z + 1, since the discriminant of the polynomial is 81 = 92, hence
K 1s a cyclic cubic field. From Theorem 5.2.1, we get the integral basis of the field is
(1,0,0(0)) = (1,6,6* — 2) = (1,60, 6%), i.e. it has a power integral basis, Ox = Z[6]. The
discriminant of the field is d(K) = (9)* = 81, then from the definition of Minkowski’s
bound, we have Cx = 2[81|"/2 = 2, hence CI(K) = ([p]|p[2). Now we consider the
decomposition of 2, for p = 2, f(z) = x> + x + 1(mod 2) is an irreducible polynomial, i.e.
2 is inert in K. Hence CI(K) = {1}, and h(K) = 1.

Then we see another example, the number field K = Q(#) with 0 is a root of f(x) =
23 — 22 — 42 — 1. This is a standard form of cyclic cubic field with the secdond case of
Theorem 5.2.2, we yield that e = 13, u = 5,v = 1 for this case. Hence, the discriminant
of the field is 13 = 169, with v = [Ox : Z[0]] = 1, hence for any case, we can use
theorem 3.3.5, since K is monogenic with integral basis (1, 6, 6?). From the definition of
Minkowski’s bound, we have O = §|169]1/2 = 2.889 < 3, hence just consider p = 2.
Since f(z) = x* + x? + 1(mod2) is irreducible, i.e. we have 2 is inert in K. Hence
ClI(K) ={1},and h(K) = 1.

5.7 Some Special Cyclic Cubic Fields

In this section, we’d like to share some cyclic cubic fields which have been researched

by some mathematicians.

5.7.1 Cubic Trinomials

First, we would like to introduce F.C. Orvay’s work [10]. Some important results for

the structure of cyclic cubic fields with cubic trinomials are listed as followings. For the
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sake of brevity, we just write down these lemma without proofs. These results can be found

in F.C. Orvay’s article.

Lemma 5.7.1. Let K = Q(0), Irr(0,Q) = 2® —px +p ", p = 3°py -+ - pr, p; = 1(mod 3)
(distinct), § € {0,2}, 4p — 27 € 72, then the following hold:

1. d(K) = p* K is monogenic’ with integral basis {1, 0,0?}.

2. {o,0'} is a system of fundamental units of K, where 0 = (m + 6,)/3, o' denote the

conjugate of o, 6y = (4p — 90 — 66%)/\/Ap — 27 and m = (\/4p — 27 — 3) /2.
This lemma is suitable for p = 9, 13,19, 37,63,79,97,117,139, 163, - - -.

Lemma 5.7.2. Let K = Q(0), Irr(0,Q) = 2*> — pxr + pq,p = p1-* - pr,pi = 1(mod 3)
(distinct),q > 2, 4p — 27¢* = 1, then the following hold:

1. d(K) = p* K is monogenic with integral basis {1,0,0*}.

2. {u, ('} is a system of fundamental units of K, where jp =2+ 30 4+ 371, 0 = (=1 +
01)/3,7=(c*+ ((q+1)/2)0)/q, 61 = 4p — 990 — 66 and 1/ = —1 — 60 + 37.

3. Irr(p, Q) = 2® — 3((1 4+ 9q)/2)x* + ((27q — 3)/2)x + 1.

4. {1,0,7} is another integral basis.

This lemma is suitable for p = 61,331, 547,817, 1141, - - -.
For the first lemma, on choosing p more precisely , we have found a results as follows:

Theorem 5.7.1. For any integer k, set p = k* + k + 7. The polynomial X3 — pX + p is
irreducible over () and has Galois group As.

Proof. For any odd number p, 2* — pr + p = 2° + x + 1(mod 2), hence x> — px + p is
irreducible over Q. Its discriminant is (—4)(—p)® — 27p? = p?(4p — 27). To have a Galois
group As, we need 4p — 27 € Z*. Writing ¢ = 4p — 27, then we have p = 1(c* +27). To
make it integral we need c odd, and write ¢ = 2k + 1, then

1
p:1(4k2+4k+28):k2+k+7.

For any k, k? 4+ k -+ 7 is odd so if we defined this expression to be p, then 2* — px + p has
Galois group As over Q. ]

*Note that this is not the standard form of cyclic cubic field, however, it is isomorphisic to f(x) = z* — 3pz —
(4p — 27)p.
fwith power integral basis
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5.7.2 Simplest Cubic Fields

There is another special class of cyclic cubic fields called the simplest cubic fields
first studied by Daniel Shanks [20], Shanks computed the discriminant of the polynomial,
fundamental units of the field, the regulator and some class number. A recent job for this
type of cyclic cubic fields can be find in Lang’s article [21].

The simplest cubic field is defined by the following polynomial,

f(x)=2°—ar* — (a+3)r — 1, (5.6)

where a € Z. One can calculate the discriminant from the formula of the discriminant of
polynomials (Refer to B.0.1), then Disc(f) = (a® + 3a + 9)%

D. Shanks only focuses on that e := a? + 3a + 9 is a prime, then from theorem 5.2.2,
there is only one cyclic cubic satisfies this polynomial equation up to isomorphism, and e
is also discriminant of the field.

What’s more, one can verify that if § is a root of equation 5.6, then ¢’ = 1/( + 1) and
0" =1/(0' + 1) are also a root of the equation 5.6. And since §(6* — af —a — 3) = 1, i.e.
6 is a unit, so is ¢, then 1 + 6 = —1/¢’ is also a unit. In fact, (6,1 + 6) are independent
fundamental units, which can be verified by Godwin’s criterion [22]. More generally, we
have following theorem which could be found in Lang’s article [21].

Theorem 5.7.2. If e := a® + 3a + 9 is square-free, then (1,0, 0?) is an integral basis of K,
and (—1,0,0") generates the full group of units Ok.

A simple result about decomposing prime is that 2 is inert in &, since O = Z[f] and
f(z) = 23 + 2% + 1(mod 2) when m is odd, while f(x) = 2°® + 2 + 1(mod 2) when m is
even.

The explicit solution (a positive root) of equation 5.6 is

1
0= 5(2\/Ecos¢ +a),
where
1 V27
¢ = — arctan

3 2a + 3
As for the class number of them, D. Shanks [20] finally give a formula to compute

them:
a®+3a+9 3 115
h=—"—5—|1- — : 5.7
4log2a [ aloga+0(a2)]£[2f(p) (5.7)
where f(p) is defined by
1 for p = e,
2
fp) = (ﬁ) for p¢=1/3 = 1(mod p), (5.8)
i herwi
g7 otherwise.

Shanks give a table of class number for —1 < a < 410, where e is a prime.
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Chapter 6 Cyclic Sextic Fields

In this chapter, we will study cyclic sextic number fields. First of all, the result of
discriminant of a cyclic sextic field could be found in Méki’s book [11], while we would
recover the result using the conductor-discriminant formula 3.5.1. Then, from a necessary
theorem given by Méki, together with the result of discriminant, we give the integral basis
of a cyclic sextic number field. After that, with the help of the fundamental ramification
theorem 3.3.3, Stickelberger’s theorem 3.3.4 on unramified primes and decomposition re-
sults for cyclic cubic field and quadratic field, we obtain the prime decomposition for cyclic
sextic number fields. As for the unit groups and class numbers for real cyclic sextic fields,
Miki has solved those problem, and give a table on them. For complex case, it’s a CM-
field, hence the class number and the unit group could be reduced into its cyclic cubic field.
But unfortunately, we haven’t got the final precise results of them.

Let K4 be a cyclic sextic number field over Q with Galois group G' = Cj, then from
Lemma 3.1.1, we have that the signature of K¢ can only be (6,0) or (0, 3) i.e. K is totally
real or totally complex field. It’s easy to see that G has exactly two nontrivial subgroups,
namely those are of order 2 and order 3, thus the field K has exactly two nontrivial sub-
fields: a (real) cyclic cubic field K3 and a quadratic field K.

Consider Ky = Q(y/m) where m is a square-free integer. K3 = Q(6). Hence, K¢ =
Q(0,+/m). Let an odd integer s be such that the automorphism ¢ induced by the mapping

Crs — C Joo where fs is the conductor of K, satisfies the conditions:

o(6) = 0',0(0') = 0" 0 (v/m) = —/m

where the 6" and 6” denote the conjugates of § in the cyclic cubic subfield, which are defined
in theorem 5.2.3. What’s more, we use the following notations ) = ¢%(v),i € Z. For

simplicity, we will continue to use these notations for the following content.

6.1 Discriminant and Integral Basis

From the Kronecker-Weber theorem, if K is a subfield of a cyclotomic field Q((x)
then also Q((y,) and Q((y,) are contained in ()((;). Hence, we have

fo = lem(fa, f3)

As we all known, the conductor f, of real quadratic field Q(+/m) is equal to its fundamental
discriminant D, and the conductor f; = e? as we mentioned in 5.2.2. The characters
of Kg [11] are the principal character 1, the quadratic character y» of K5, the generating

characters 3 and Y3 of K5 and the generating characters ys = x2x3 and X = x2X3 of K.
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The conductor of the character y,, and Y, is f,, (since they service for same cyclic galois

group). Hence we have following results [23]:

Theorem 6.1.1. The discriminant d(Kg) of the real field Kg is
d(Ks) = ff?f??fz-

The proof is easy, as we mentioned above, we have found all characters of K, then

by the conductor-discriminant formula 3.5.1, we immediately get

d(Ks) = f(?f??fz-
What’s more, for complex cyclic sextic fields, we have similar results:
Theorem 6.1.2. The discriminant d(Kg) of the complex field Kg is
d(Ko) = fg f3 f2.
The next theorem [11] gives a necessary condition for a number o € K to belong to
Ok,. For simplicity, let us denote ged( f2, f3) to be f..

Lemma 6.1.1. If o € Og,, then « is of the form
1 1
o= 5(% + 310 + 220') + 2f (o + 310 + 120" )v/'m
where Lx; + sy;/m € Ok,, (i = 0,1,2).

Pl"OOf Leta = ag + CL1(9 + CLQQ/ + (bo + b10 + bggl)\/m, where a;, bz € Q(l = 0, ]_, 2) be a
number of Ok, . Then from the definition of o, we have

o+ 04(3) = 2(@0 + a0 + a29') € OK:’,'

Recall the theorem 5.2.2, we have (1, 6, 0') is an integral basis of K3. So we have a; = 1/2,
where x; € Z(i =0, 1,2). Also we have

vm(a —a®) =2m(by + b6 + by0')

is an algebraic integer. Hence b; = z;/(2m) where z; € Z(i = 0,1,2). Let \; = 1z; +
52z;1/m. Now we have the equations:

a = )\0 + )\19 + )\29/ (61)
a® = N4 M0+ 0" (6.2)
Ck” = )\0 + )\19// + )\29 (63)

the determinant of the system of linear equation is =+ f5 (— f3 actually, but no need to de-
termine the sign), since this can be viewed as the determination of integral basis and its
conjugates. From the definition of discriminant, we have the discriminant is a square root
of the discriminant, namely =+ f3. By any case, this follows that the number f3\;(i = 0,1, 2)
are algebraic integers.

Then, the numbers f3z;/m(i = 0, 1, 2) are rational integers. Since f3 is odd, gcd(m, f3) =

fe. Hence z;/m = y;/ f. where y; € Z(i = 0,1,2), and 12; + 3y;/m € Og,, because f5
is odd and f3); is integral. ]
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Note that if f. = ged(m, f3) = 1, it follows that Ox, = Ok, Of,, which coincides
the result which can be found in [6, 7] etc.

Next we will using above lemma to determine the integral basis of the cyclic sextic
field.
Theorem 6.1.3. The integral basis of the cyclic sextic field K¢ = Q(6, /m)(m is a square-

free integer. ) is of form
(1,6,6",m,m6,10"),

where n = %ﬁ, f« = ged(fa, f3) and D = f, is the (fundamental) discriminant of the
quadratic subfield.

Proof. From lemma 6.1.1, it’s easy to show that each element in the basis is of course
integral in K. So we need to calculate the discriminant of these elements. Let A denote
the matrix

10 ¢
10 ¢
10" 0
and
n no o n no 0t
B=\{mn no nt" | ,C=|n 70 no"
U n no" 0o
where 7 = ngT then the discriminant of the elements is following:

Disc(1,6,6',n7,n0,10")
- (det<o C-B )
= (det(A) -det(C — B))?
= (~h- (WDP- (~)/1)
fip?

f2
= fsf?f;étQ
= f3f2f6

i.e. we have the basis’s discriminant is equal to the discriminant of the field, hence

(17 07 9/7 777 7797 779/)

is an integral basis. [

6.2 Prime Decomposition

For the prime decomposition in cyclic sextic field, we should consider the situation of
its two subfields, which are solved in Chapter 4 and 5. First of all, let us consider the rami-

fied primes in the cyclic sextic field. As we known in previous theorem, the discriminant of
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the cyclic sextic field is d(Kg) = fof3f¢, from the fundamental ramification theorem 3.3.3,
we should consider the prime numbers and discriminant. Since fg = lem( f5, f3), hence if
p | d(Kg), thenp | fo orp | f3. More precisely, form the chain rules for ramification index

and decomposition number, we can immediately get the following results.

Theorem 6.2.1. Let K¢ = Q(6, \/m) be the cyclic sextic field, suppose fs = 3°pipy - - - ps,
and fo = D = 2°q1qy - - - 5 where § = {0,2}, p; = 1(mod 3) and ¢; = 1(mod 2); s,t are
rational integers. What's more, without loss of generality, suppose p; = q; for 0 < i <
to < min{s,t}, Then we have

1 ifp = pi = q, where 0 < i < to < min{s,t}, then p is totally ramified, i.e.
pOKG = @6

2. if p = p;, where i > to, then p is ramified in the subfield K (0), and we have pOg, =
b if (2) = 1orpOr, = p* if (2) = 1.

3. if p = q;, where i > ty, then p is ramified in the subfield K(\/m), and we have
PO, = i3 or pOx, = > To determine which case is suitable for p, we should
used the results in section 5.3 in chapter 5.

As for the results for unramified cases, suppose p is an unramified prime in Ok, i.e.

p1 foand p 1 f3, then from the theorem 3.3.4, we have

Theorem 6.2.2. Let K¢ = Q(6,/m) be the cyclic sextic field, p be an unramified prime
in Ok, then

1. if(@) = 1, then pOy, = [[o_, ¢: (splits completely), or pOr, = o1 92.

2. if(@) = —1, then pOg, = p (inert) or pOg, = 919263

To determined the exact cases for above unramified theorem, we should refer to chap-
ter 5.

6.3 Unit and Class Number of Real Cyclic Sextic Field

For real cyclic sextic field, we have the signature of K can only be (6,0), then ac-
cording to Dirichlet’s theorem 3.4.1 on units in K there are 5 fundamental units, which
together with —1 generate the multiplicative group Uy of units of /4. The unit group Uy
has the unit groups U; and Us; of the subfields K5 and K3 as subgroups.

As we known before, suppose Us is generated by —1 and the fundamental unit x, and
Us is generated by —1, a fundamental unit 7 and one of its conjugates 7/ = (7). From
Latimer’s work [24], we know that K has a system of fundamental units containing p, 7, 7'.
So there are three fundamental units are known, i.e. those belonging to the proper subfields,
namely €, 7, 7'.
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To determine the other two units we should first get a so called cyclotomic unit which
is calculable from a definite expression. This unit, together with its conjugates, and the
units of the proper subfields generate a subgroup of finite index in the whole unit group,
and it is in principle relatively easy to obtain the whole group from this subgroup.

First of all, we need a so-called relative units, a unit € of K¢ for which Ng /3(6) = +1
and Ng/2(€) = £1is called a relative units. Let Uy denoted the group of relative units, i.e.
we have

UR = {6 c U6|N6/3(6) = :i:l, Nﬁ/Q(E) = :l:l}

Note that if € € Up, then Ng1(€) = Noj1(Nej2(€)) = Naj1(£1) = 1. On the other
hand, 1 = Ng/1(€) = N3/1(Nej3(€)) = (Ney3(€))? so that for € € Ug, we have Ng/3(e) = 1
What’s more, Miki has proved that in K§, there exists a generating relative unit &g
such that
Ur = {£&x€Rlk, 1 € Z}.

On the contrary, every relative unit in /K has a unique representation in this form. Maiki
also showed that how to calculate £ and then establish a solution of the unit.

As for the class number, using the cyclotomic unit, Mdki has prove a theorem that
heg = hohshgr, where ho, hy are class number of the subfield K5 and K3, and the hp is
so-called relative class number of K. These numbers can be calculated by the cyclotomic
units together with fundamental units.

Maiki lists a huge number with conductor fs < 2021 of cyclic sextic field with class
number and unit group in her book. Then, together with Ennola and Turunen, she extend
this table for fi < 4000.

6.4 Unit and Class Number of Complex Cyclic Sextic Fields

For complex situation, then the signature of K can only be (0, 3), then according to
Dirichlet’s theorem 3.4.1 on units in K4 there are 2 fundamental units, which together with
1(Kg) generate the multiplicative group Uy of units of K.

To start discussing the unit and class number of complex cyclic sextic fields, we first
introduce the CM-field. Then idea of CM-field is the extension of complex quadratic field
and cyclotomic field. A CM-field K is a totally imaginary extension of a totally real number
field kT, i.e.

K = K*(ya),
where K™ is totally real, and a € K has negative conjugates.
For example, K = Q((,,) is a CM-field, since K = K*(y/a), where K™ = Q(¢ +
(YH,anda=C*+(2-2.
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The relationship between the largest totally real subfield and the CM-field are very

useful:

Theorem 6.4.1. Let Q C F' C K be nontrivial extensions of number fields. Then K is a
CM-field, with F its totally real subfield, if and only if Uy /U is finite.

Another useful theorem [6] for class number and unit group is showed as follows:

Theorem 6.4.2. Let K be a CM-field, K its largest totally real subfield, h and h™ be the
class number of them respectively, U and U™ be the unit group of K and K™, then:

1. h™ = h/h* is so-called the relative class number, which is a rational integer:

22.Q:=[U: (K)U|=1or2

More precisely, S. Louboutin has given the class number for complex cyclic sextic
field with fs < 220000.
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Chapter 7 Examples for Cyclic Sextic Fields

In this chapter, we will give some examples for cyclic sextic field, using our results
or methods given by chapter 6 to a series of problems: discriminant, integral basis, decom-
position of prime, unit group and class number etc. For the first example in cyclotomic
field, there exists a complete theory for that. But as a cyclic sextic number field, using the
methods given by chapter 6, we also got the structures of it. More precisely, we discover
two subfields of it, and then calculate the discriminant which is equal to the result in cy-
clotomic fields’ theorem. Then we also give the prime decomposition of it based on our
theorems in section 6.2. Also, we calculate the class number using the general theory. To
solve the second field in section 7.2, we use almost all preliminaries we mentioned before.
We first determine the Galois group of it, then we calculate the polynomial discriminant of
it, based on the discriminant formula, then we find two subfields of it. After that, we also
find its integral basis and get the prime decompositions. Also, we have tried to calculate
the class number of it using general theory, and get the same result as Méki did. The third
section is another example given by A Bremner and B Spearman[12] with sextic trinomial,

but unfortunately, we haven’t got the final results.

7.1 7-th Cyclotomic Field
7.1.1 Cyclotomic Fields

Let ¢, denote a fixed primitive n'™ root of unity, and let Q(¢,,) be the number field
generated by all the n™ root of unity. The field Q((,,) is called the n' cyclotomic field. A

following result is very import theorem.

Theorem 7.1.1. Let ¢(n) denote the (Euler) totient of n, then Q((,,) is an Abelian extension
of Q of degree ¢(n). More precisely, there is an isomorphism:

where 0,((,) = C°

Since a sub-extension of an Abelian extension is also Abelian, cyclotomic fields and
their subfields already give us an abundant supply of Abelian extensions of (. More for-

mally, we have the

Theorem 7.1.2 (Kronecker-Weber). Every finite abelian extension of Q is contained in a
cyclotomic field.
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7.1.2  7-th Cyclotomic Field

Now let us consider the simplest cyclic sextic field, a 7-th cyclotomic field. As we all
know, K = Q((;) is generated by (7, which is a root of unity, and its minimal polynomial
is

f@)=a+2° +2t+ 2+ 22+ o+ 1.

First of all, we would know its structure. As we known in Section 6.4, this ficld is a
CM-field, i.e. a totally imaginary extension of a totally complex cyclic cubic field. Write
as before, we have K¢ = Q(y/m, 6), where m is a negative squarefree integer. Now we
need to find the minimal polynomials for y/m and 6.

Note that (% is complex conjugate to ¢ *, so let £ = (7 + C%’ then € is a real number”.
Since (7 is a root of the minimal polynomial, then we have

1 1 1
G+ —+G+5+E+5+1=0,
2 3
Gr 7 Cr

Substitute £ into the equation, we have

g =& +26¢ 26 -1=0 (7.1)

Letx =& — %, we can change it into the standard form, i.e.

13
3 2
— 2 _9 =
T T T+ 57"
where we can get e = 7,u = —1,v = 1, hence, the cyclic cubic subfield defined by &,

where ¢ is a solution of equation 7.1. i.e. Kt = K3 = Q(¢).

From theorem 5.2.2, we got the discriminant of K3 is 49 = f2, and since v = 1, we
got that (1, &, £?) is a power integral basis of K.

On the other hand, note that the automorphism o5 : (; — (? generates the subgroup
of order 3. Thus consider w = (; + (2 + (7. From the properties of root of unity, we have

following two equations:
(G+G+E+ (G +HGE+HG) =1,

(GHE+HE+E+E)=3-1=2

Then w satisfies a quadratic equation:
h(z) =2 +x+2=0,

hence Q(w) is a quadratic subfield, and Ky = Q(v/—7). Then the discriminant of K is
—7 = f,. From theorem 6.1.2, we have the discriminant of Ky is d(Kg) = (—7) x (7)% x
(7)% = =75

"One can find that £ = 2 cos 2Z.
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A famous result for discriminant of Q((,), where p is a prime, is that Disc(Q((,)) =
(—1)(P=1)/2pr=2_1n this field, we have Disc(Q((;)) = (—1)377"2 = —7°, which coincides
our result.

To sum up, we got that K5 = Q(&,+/—7). As for the prime decomposition, the dis-
criminant has only one prime divisor, namely 7, hence only 7 is ramified in /5. what’s
more, since 7 is common factor of f, and f3, hence it is totally ramified. In fact, since
Ky is monogenic, we have (x + 6)°(mod 7). For other primes, we just need to consider
the decomposition in subfields, the using the result in section 6.2. For example, consider
p = 37, note that

() com () - (7)) -

Hence 37 is ramified in /(,. On the other hand, similarly, consider we just need to verify
that 49¢7-1/3 = 1(mod 37) or not. However, 4967-1/3 = 1212 = (—4)6 = (-10)? =
26 # 1(mod 37), hence 37 is inert in K. Hence, 37 = @, .

As for the unit group of K§g, we first refer a theorem [6] which is a corollary of theorem
6.4.2 as follows:

Theorem 7.1.3. Let m = p°, where p is an odd prime, s € N*, then K = Q((,,) has the
same system of fundamental units to K+ = Q((,, + .b).

So from Dirichrlet Theorem 3.4.1, U(Kg) = u(Kg) x Z*, where pu(Kg) = ((7) is the
root of unity of K and the fundamental units are the same to K3. The fundamental units in

K3 are

(F1+E+82-)=(1+G+G+G +G4 -G = G).

As for the class number, firstly, we compute the Minkowski’s bound, and we get

4\* 6!
C(Kg) = (;) @\4—75 —4.13

Hence Cl(Kg) = ([p]|p|2 or 3)

now we consider the decomposition of 2 and 3. since (5-) = 1, hence it splits in K.
On the other hand, 2% + 2% — 22 — 1 = 23 + 22 + 1(mod 2), i.e. it’s inert in K3, hence
2 =1y . Infact, p; = (2, 1+E+E3), oo = (2, 1+E24+€3), since 1+ &2+ &3 is conjugate
to 1+ & + &3, hence [p1] = [po] = 1.

For p = 3, it’s easy to see that (_?7) = —1and 2® + 2? — 2z — 1 is irreducible in [F5,

hence p = 3 is inert in K. To sum up, we have the class number is 1.

"Here we haven’t use cubic reciprocity, since there is no definition for p = 2(in fact it only define in p = 3k + 1,
like quadratic reciprocity defined in p = 2k + 1).
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7.2 A Real Cyclic Sextic Field

Consider the sextic field K4 generated by a root of
f(z) =2° - 2° — 62" +62° + 82> — 8z + 1.

First note that f(z) is irreducible over Q, since f(z) = 2° + 2% + 1(mod 2). In order to
verify the Galois group of the splitting field of f, we should first compute the resolvent
polynomials. Let p; = z1 + 22, po = x1 + x5 + 3, then use the numerical method, we

have the approximate root of f are:
(r1,7r9,13,74,75,76) = (—1.97766, —1.46610, 0.14946, 0.73068, 1.65248,1.91115)

Then,

Ry r(y) = H (y = pri(r1, .-, 76))

p1i€orb(p)
= 2 — 5™ — 142" + 98212 + 72 — 56720 + 28027 + 140428

—8182" — 159625 + 735x° + 700z* — 2032% — 7722 + 11z + 1
= (2% —2® =22+ 1)(2% — 22° — 102" + 62° + 302 + 17z + 1)
(2% — 22° — 102 + 272% — 122° — 42 + 1)

So we have (3, 6%) cycle, from table A.1, we have that the Galois group of f is either

Cg or Dg. Then we calculate 1z, ¢,

Ry, s(y) = H (y — pai(r1,- .-, 76))

p2i€orb(p)

= 2%+ 22" —1062"® — 6002'" — 5932 + 32522 — 65302
—2589x13 4 4875212 — 6752 — 17592'° + 33492° + 53762° + 126027
+11882° + 8652° + 3162* + 772° 4+ 232° 4+ 112 + 1

= (2 — 2+ 1)(2% — 122° + 32* + 72 4 62% — 20 + 1)

(2% + 82° + 252 + 22% + 52 + 27 + 1)
(2% + 72° — 8z* + 42® + 272% + 122 + 1)

So we have (2, 6%) cycle, from table A.1, we have that the Galois group of f is Cg, also we
know Kj is totally real.

The polynomial discriminant of f could be given by formula B.0.1, in fact, Disc(f) =
453789 = 33 x 7° Note that, d(Ks) = fof2f2 by theorem 6.1.1, since fs = lem(fs, f3),
hence we have f3|d(Kg) and f3|d(Kg). The relation between d(Kg) and Disc( f) is showed

in lemma 3.2.1, i.e. Disc(f) = a®d(Kg), here we have

Fx T =dfHfi f3,
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from the requirements we mentioned above, we have
a2 FA3% X TP,

this force f3 = 7,and @ = 1 or @ = 3. Then a®f3 2|3 x 7°, i.e.
a®f3]3% x 73

If a = 3, then f, = 7, and for this case d(Ks) = 7°, and we get 33d(Kg) = Disc(f). An
contradiction! Hence, a = 1, and we could get fo =3 x 7.

To sumup, we have f, = 21, f3 = 7. So we can immediately get the quadratic subfield
is Q(v/21), with minimal polynomial g(x) = 2? — z — 5, and integer ring Z [%ﬁ] :
As for the cyclic cubic subfield, since e = f3 = 7, and v = 1, hence we have the minimal

polynomial of 6, h(x) = 2* — * — 2z + 32 with power integral (1,6, 6?). To sum up,
K¢ = Q(ev \ 21)

Since d(K4) = Disc(f), hence K has a power integral basis, wlog, let r be a root
of f,then (1,7,7%,...,7°) is a integral basis. On the other hand, we have another integral
basis given by theorem 6.1.3.

The prime decomposition is quite easy, 7 is totally ramified in K, since it is ramified
in both two subfield. In fact, f(z) = (z + 1)%(mod 7). Hence 70k, = ¢, where p =
(7,7 + 1). 3 is ramified in K, and inert in K3, hence 20y, = '*. The other prime’s
situation could be solved through theorem 6.2.2.

As for the class number, we first compute the Minkowski’s bound,
6!
Cr, = (4/#)0@\/453789 =10.4,

now we should consider p = 2,3,5,7. we can find that 2 is inert in Og,. 7 is totally
ramified with p = (7,7 + 1), while N(r +1) = 7%, (r + 1) C (7),hence p = (r + 1) is a
principal ideal.

Asforp = 3, wehave f(z) = (2+x+2?+2%)?(mod 3), hence o’ = (3, 2+r+r2+r?),
N@2+r+r*+r®) =3hence ¢ = (24 r + r* + r®). Similar result for p = 5. Finally,
we get h(Ks) = 1.

7.3 Sextic Trinomials

As expected, increasing the degree of a polynomial will increase its complexity. In

the case of sextics, however, the number of possible Galois groups jumps up to sixteen. We

“In fact, since ¢(21) = ¢(3) x ¢(7) = 12 and 6|12, actually this cyclic sextic field is a subfield of the cyclotomic
field Q(¢21).
Tcalculate through f(x — 1)

41



SUSTC’s Dissertation for Bachelor’s Degree

can once again find a list of these groups in Cohen’s book and we expect Sg to be the most
frequently occurring group.

It is much more preferable to work with sextic trinomials rather than general sextics.
Again, we can reduce the possible unique forms of these trinomials to only 2°+ax +b, 25+
ax?+b, 2%+ az® +b. Note that the last of these three forms can be simplified to a quadratic
in 3.

It has already been shown by A Bremner and B Spearman [12] that up to scaling,
there exists a single, unique sextic trinomial with Galois group isomorphic to Cs; which
was given as

f(z) = 2° 4+ 1332 + 209

Now we focus on this example, i.e. Kj is the splitting field of f(z). First of all, since
f(z) = 25+ z + 1(mod 2), hence f(z) is irreducible over Q. Then, we can compute the

discriminant of the polynomial, from formula B.0.1, we have
Disc(f) = (=1)% -5 133% + (=1)"%" - 6° - 209° = —19° x 832 x 277>,

We have d(Kg) = fof2f2 by theorem 6.1.1, since fg = lem(fy, f3), hence we have
[3|d(Ks) and fi|d(Kg). The relation between d(Kj) and Disc(f) is showed in lemma
3.2.1,1i.e. Disc(f) = a’d(Ks). Whatever, f3|d(Kg) force that f3 = 19 and —19| f,. There

are several possible cases for d(Ks):

f3 =19, fo = —19;

f3 =19, fo = —19 x 83;
f3=19, fo = =19 x 27T;

f3 =19, fo = —19 x 83 x 277.

To recognize the case for the field generated by a root of f, we need another method. How-

ever, this example is still under solving.
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Chapter 8 Galois Extensions of Function Fields

Liiroth’s theorem is one of elementary results in the classical algebra which we can find
in a textbook by Van Der Waerden [25]. Liiroth [26] proved Liiroth’s theorem in case K =
C in 1876. It was first proved for general fields K by Steinitz [27] in 1910, by the above
argument. An precisely elementary algebraic proof using field theory and Gauss’s Lemma
was given by G. Bergman as a series of exercises for students. The Liiroth’s theorem is

showing as follows:

Theorem 8.0.1 (Liiroth’s Theorem). Let K and E be fields such that K C E C K(z),
where x is transcendental extension of K. Then E = K(u) for u € K(x), and K(x) is
finite-dimensional over E.

In our work, we are focus on a special case in Liiroth theorem, i.e. we add a condition
on the field extension K (x)/E, namely we suppose that K (z)/E is Galois. And for this
case, we will first give a simple proof of the similar results. Of course, we won’t use
the result of Liiroth’s thorem. Then, we will give a explicit form of the invariant rational

function due to the Galois group.

8.1 Existence Theorem

First, we’d like to give the following theorem:

Theorem 8.1.1. Let K and E be fields such that K C E C K (x), where x is transcendental
extension of K and K (z) is Galois over E. Then E = K (u) for u € K(z).

For simplicity, we start with a definition of height of a rational function.

Definition 8.1.1 (height). The height of a rational function u(x) = f(x)/g(x) in a rational
function field is defined to be

ht(u) = max{deg(f(z)), deg(g(x))}

Gauss’s Lemma is necessary in our proof, which is either of two related statements
about polynomials with integer coefficients. The first one is the primitivity statement and

the second is the irreducible statement [28].
Lemma 8.1.1 (Gauss’s Lemma). Let R be a unique factorization domain.

1. The product of two primitive polynomials is primitive, what's more, for f,g € R[z],
we have C(f)C(g) = C(fg), where C(f) is the great common divisor of the coeffi-
cients of f.

2. If f € R[z]\R is irreducible in R[z|, then f is irreducible in Frac(R)|x].
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We give the following lemma 8.1.2 which solve the finiteness of the extension in

Liiroth’s theorem and our special case.
Lemma 8.1.2. [f K is a field and u(x) € K(x)\K, then [K(x) : K(u)] = ht(u).

Proof. Write u(z) = a(z)/b(z), where a,b € KJz| are coprime. Then x is a root of
the polynomial f := a(T) — u(x)b(T) € K(u)[T]. Since this polynomial has degree
one in u, then the coprimality of a(7'),b(T) implies that f is irreducible in (K[T])[u] =
(Ku))[T]. From Gauss’s Lemma, we have that f is irreducible in the fractional polynomial
field K (u)[T1], i.e. f is a constant multiple of the minimal polynomial of = over K (u). i.e.
we have [K(x) : K(u)] = deg,(f) = ht(u). O

Since K (z)/FE is Galois, hence is a finite separable and normal extension. From the
following so called primitive element theorem , we could know that K (z)/ E is finite simple

extension.

Lemma 8.1.3 (Primitive Element Theorem). Let E O F be a finite degree separable ex-
tension. Then E = F(«) for some o € E.

Proof of Theorem 8.1.1. Since K (x)/FE is Galois, so is finite simple extension (simple al-
gebraic extension).Since K (x) = FE(z), i.e. K(z) can be viewed as a simple algebraic
extension by adding = into £. Then we may assume that p(¢) be the minimal polynomial
of x over F,

p(t) =t" + 1ot 4+t + 1o, (r; € E C K(2)).
Consequently, n = deg,(p) = [K(z) : E]. Let rewrite r; = a;/b;, (i = 0,1,...,n — 1)

where a;, b; € K|[z], and a; is coprime to b;. Then p(t) could be multiplied by the l.c.m. of
the b;’s in order to get a primitive polynomial over the ring K [x], namely

q(t) = cut” + curt™t + -+ ¢ € K[2][t].

Here, we get deg,(q) = deg,(p)
Note that (at least) one of the r;’s, i.e. u := r, € E, doesn’t not belong to K, else x
would be algebraic over K. Let’s consider the polynomial:

Rz, 1) = ax(Bbe(r) — ax(@)bult) € K[, 1
Since R(z, z) = 0, ¢(t) is the minimal polynomial of , then ¢(¢) divides R(z, t) in K (z)[t].
Since K [z] is a UFD, hence by Gauss’s lemma, ¢(t) divides R(z,t) in K[z, t]. Therefore

deg,(R) > deg,(q).
On the other side,

deg,(R) < ht(u) = max(degay, degby) < max(degcy, degc,).
Therefore deg, (R) < deg,(q). Hence, deg,(R) = deg,(q), that is we have
R(z,t) = q(t)m(t),

where m € K|t].
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Then we will show that m(t) is constant, i.e. m(t) € K. Assume on the contrary
deg(m) > 0, then we have

ap(t) = q()m(t) + (1), be(t) = q(t)m(t) + lo(t)

with deg(l;) < deg(m)(i = 1,2). Since m(t) divides ax(t)bx(x) — ar(x)bg(t), hence also
divides {1 (t)bx(z) + ax(z)l2(t), which is possible only if

L (t)be () 4+ ar(z)la(t) = 0.

However, last equation is impossible since ay is coprime to by, and neither of them is con-
stant. A contradiction! Hence, deg(m) = 0 and m € K.

write g(t) = c(ay(O)bi(z) — ap(@)by(t)) ¢ € K, [K(z) : E] = deg,(q) = ht(u).
From lemma 8.1.2, we have [K(z) : K(u)] = ht(u), hence we have [K(z) : K(u)]
[K(z): E]. Sinceu € E, then £ = K(u) = K(ry).

~—

LI

8.2 Explicit Form of Invariants

From now on, we have prove the existence of the u(x) € K(z), such that £ = K (u).
Next, we will show the explicit form of u. Assume that Gal( K (z)/E) = Gal(K (x)/(K(u))) =
{o1,09,...,0,}.

In fact, we have an easy proposition that if ' C F' C K are fields, then Aut(K /E) is
a subgroup of Aut(K /F'), since the operation (composition) is the same and any automor-

phism which fixes £ must also fix the smaller field F'. So, we have
Gal(K(x)/E) = Aut(K(z)/E) C Aut(K (z)/K).

Next we will show that the automorphism group of a rational function field K (x) is
PGL(2, K). From lemma 8.1.2, let u = % € K(x), where a,b,c,d € K and ad —

be # 0, then [K(z)/K(u)] = ht(u) = 1, ie. K(x) = K(u). On the other side, if
we have K(z) = K(u), ie. [K(z) : K(u)] = 1, then ht(u) = 1. u = £ where

Q(z)°
max deg(P(x)),deg(Q(x)) = 1, then u = Zﬁis, where a, b, c,d € K and ad — bc # 0. i.e.
We have K (z) = K(u) ifand only if u € g;”j:s, where a, b, c,d € K and ad — be # 0. i.e.

we have the automorphism group of K (z) is

b
Aut(K(z)/K) = {xr—> Z;E—{—'——d | a,b,¢,d € K,ad%bc}.

Since general linear group is

b
GL(2,K) = [ abede K,ad—be#£0%
d

C

then consider the group homomorphism: GL(2, K) — Aut(K (x)/K), where

" a b Haxjtb
“\Ne d cr +d’
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Ker¢:{<g 2) |a€K—{O}}.

We defined the projective general linear group PGL(2, K') = GL(2, K')/(al,). Hence,

we have

with kernel

Aut(K (z)/K) = PGL(2, K).

Now we have Gal(K (z)/FE) C PGL(2, K) up to isomorphism.

We can easily write down the minimal polynomial of z over £ = K (u) as following,

p(t) = (t = ov(2))(t — 02(2)) -+ (t = 0u(2))

Then n = |Gal(K (z)/E)| = [K(x) : E] = [K(x) : K(u)] = ht(u).

To sum up, we have following theorem:

Theorem 8.2.1. Suppose K (x)/E is Galois, then G = Gal(K(z)/E) C PGL(2, K).
What's more, suppose the minimal polynomial of K (x)/E is

p(t) = (t = o1())(t — 02(x)) -+~ (¢ = ou(x)) =" + cust" " + -1t + o,

where c;(x) € K(x). Then Vc,(z) ¢ K can be defined as u = u(x), which satisfies
F(2)% = F(u).

Proof. The first statement has been solved above, and the second statement is also a direct
corollary of theorem 8.1.1’s proof, since now the elementary symmetry polynomials of
o;(z) are the coefficients of the minimal polynomial of x over £ = K (u). At last, as for
F(z)¥ = F(u), since G is a finite subgroup of Aut(K (x)), then K (z)/K (z)¢ is Galois
with Galois group Gal(K (z)/(K (x)¢)) = G, hence F(z)¢ = F(u) which is directly from
Artin’s Theorem. [

We would like to give some examples. First of all, let us consider a simple case, that
Gal(K(z)/E) =G ={z+ z,x — 1 — 2} := {1, 0}, then the minimal polynomial of x
willbe p(t) = (t —z)(t —1+z)=t*—t+2(1 — z),hence £ = K(u) = K(z(1 — x)).
Similarly, we can also find that there exists an isomorphism group of G, say G' = {z —
z, v+ 1/z} = {1,7}, then K(2)¢ = K(z + 1/x).

Let us combine these two groups, then we will get a new group from the composition

(in fractional linear transformation) of the elements in G and GG/, i.e.
G :={o,7)={1,0,7,07,70, 70T = 0T0} = S5 = Dj.

Note that o, 7, o070 are 2-cycles and o7, 7o are 3-cycles. In explicit,

G={zmrar—1l/rz—1l-zz—1/1-2),z—1-1/z,2—z/(x—1)}.
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Clearly, G is a finite subgroup of PGL(2, K ), let F(v) = F (m)G, then consider the minimal

polynomial of x over F'(v):

P(t) = (t—2)(t — (1)) (t—é) (t—lix> (t-(1—§)> (t—xfl)

Since the Norm and Trace of x belong to F', we can find one of the nontrivial elementary

polynomials of ¢;(z) € G,

(2?2 —x2—1)3

1§g§69i(x)gj($) T 21 —ap
One can find that ht(v) = 6 = |G| = | Ds|. This example has been directly showed in Prof.
Yu’s course for Advanced Galois Theory.

As for more possibilities of the finite subgroup Gal(K (z)/K (u)) of Aut(K (z)/K) =
PGL(2, K) is known. If K is characteristics 0, then Klein showed that G is either cyclic,
dihedral, A4, Sy or As. If K has characteristic p > 0, then Dickson showed that the only
other possibilities for G are PGL(2, p™),PSL(2, p™), and subgroups of the group of upper-
triangular matrices in PGL(2, p™). Further, for any K, one knows explicitly all subgroups
of Aut(K (x)/K) isomorphic to any of the above groups.
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Conclusions

After sorting out the preliminaries for cyclic sextic field, we succeed in finding the
integral basis for cyclic sextic field and giving an algorithm for prime decomposition. We
also proposed many examples for cyclic cubic and sextic fields as well as some small the-
orems. On the other hand, using the Galois theory, we have prove two theorems for the
Galois extensions over one-variable function field. The existence theorem is also a direct
corollary of Liiroth’s theorem, and the explicit form given by the second theorem is very

useful in finding the automorphism subgroups of a function field.
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Appendix A Table of Orbit-length Partition for Small Degree
Polynomials

This table can be found in L. Soicher and J. McKay’s [5] articles.

G T1+Ty T1+To+T3 T1— T2
Degree 3
+A,4 32
Ss 6
Degree 4
Zy 2,4 43
+V 23 43
Dy 2,4 4,8
+Ay 6 12
Sy 6 12
Degree 6
Z 3,62 2,63 6°
Ss 33,6 2,63 6°
Dy 3,62 2,6,12 6,122
+Ay 3,12 4% 62 6,122
Gis 6,9 2,18 62,18
G 3,12 62,8 6,122
+S54/V, 3,12 4212 6,24
S4/Z,4 3,12 8,12 6,24
Gis 6,9 2,18 12,18
+G3 6,9 2,18 12,18
Gas 3,12 8,12 6,24
+PSLy(5) 15 102 30
Gra 6,9 2,18 12,18
PGL,(5) 15 20 30
+Ag 15 20 30
S 15 20 30

Table A.1: Orbit-length Partition of Polynomial with Degree 3,4,6

where “+” means that the discriminants of the corresponding polynomial is square.

Note that we need a non-linear resolvent to determine PG Lo (5) and Sg etc.
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Appendix B Resultant and Discriminant of a Polynomial

We begin with some useful definitions regarding polynomials. The reason why we
refer resultant is that we can calculate the discriminant of the polynomial through this tool,
especially when the degree of polynomial is large. First of all, we give a definition of
resultant[3]:

Definition B.0.1. Let R be an integral domain, given two polynomials f(x), g(x) € Rx]

with roots oy, ..., and By, ..., B, respectively, then the resultant Res(f,g) of f, g is
defined to be

Res(f,g) = 1(£)"Ho)" ] [(es = 5))

which is equivalent to both

m

Res(f,qg) = 1(f)" Hg(%‘)

i
and

Res(f,g) = (=1)""I(g)™ H f(Bi)

From this definition, on can easily see that f, g have a common root in some if and
only if Res(f,g) = 0. An important proposition shows the relationship of this definition
to the Sylvester’s matrix (Some books take that as definition): Let S be the Sylvester’s
matrix of polynomials f(z) and g(x), then Res(f, g) = det(S).

Also for convenience, I choose a definition of normalized discriminant [29] of poly-
nomial as follows in this paper.

Definition B.0.2. Let f be a polynomial of degree n > 1 with coefficients in a field F'. Let

Fy be an extension of F where [ splits, and let ry, ... 1, be the roots of f in F|. Then the
discriminant of f is

Disc(f) := H (ri —rj)?

1<i<j<n

Note further that Disc(cf) = Disc(f) for any nonzero constant. The following theo-

rem give the relation between the discriminant and resultant.

Proposition B.0.1. Let f = a,, 2"+ - - +ay be polynomial of degree n > 1 with coefficients
in a field F'. The the discriminant of [ is given by

Disc(f) = (—1)""/2a, @ D Res(f, 1)

Example B.0.1. Let f(z) = 2™ + px + q for n > 2, then ['(x) = nz"~' + p, then from the
Proposition B.0.1, we have

DlSC(f) _ (_1)(7171)(7172)/2(” . 1)n71p" + (_1>n(n71/2)nnqn71
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Appendix C The Legendre-Jacobi-Kronecker Symbol

All the symbols with the form (%) I used in the paper are Kronecker Symbols. But

first, let us review the definition and some properties of Legendre symbol.

C.1 The Legendre Symbol

In number theory, the Legendre symbol is a multiplicative function with values 1,-
1,0 that is a quadratic character modulo an odd prime number p: its value on a (nonzero)
quadratic residue mod p is 1 and on a non-quadratic residue (non-residue) is —1. Its value on

zero is 0. Furthermore, one can easily show that this symbol has the following properties:

Proposition C.1.1. 1. The Legendre symbol is periodic, if a = b(mod p), then

()=C)

2. The Legendre symbol is multiplicative, i.e.
) G)- ()
p p p

3. We have the congruence a'P~V/? = (%) (mod p).

4. There are as many quadratic residues as non-residues mod p, say (p — 1) /2.

5. Let p be an odd prime, then

(—71) (1) (2) (1)

6. Let p, q be two different odd primes, then we have reciprocity law:

() -

C.2 The Kronecker Symbol

Now we extend the definition of the Legendre symbol [7].

Definition C.2.1. we define the Kronecker (or Kronecker-Jacobi) symbol (%) forany a and
bin Z as follows:

1. Ifb=0, then (%) = lifa = %1, and is equal to 0 otherwise.
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2. Forb # 0, firstly (%) = 1. For other case write b = [ | p, where p are not necessarily
distinct primes (including p = 2), or p = —1 to take care of sign. The we set

a) B a
<b 1 (p) ’
where (%) is the Legendre symbol defined above for p > 2, and where p = 2 we
define:
<g> B 0, if a is even
2) | (=)D ifais odd.

a\ 1, ifa>0
~1) 1 -1, ifa<o.

Also the Kronecker symbol has the following simple properties:

and also

Proposition C.2.1. 1. (%) =0iff (a,b) # 1
2. forall a,b,c, if bc # 0, we have

() =) =)
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