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Abstract

The semi-implicit Euler Maruyama method is studied to approximate stochastic
differential equations (SDEs) driven by both the Brownian motion and the symmetric
α-stable process. The drift coefficient of SDEs under consideration is allowed to grow
super-linearly. The strong convergence of the semi-implicit EM is shown with the rate
of (α− ε)/4 for any arbitrarily small ε > 0 and α ∈ [1, 2).
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1 Introduction

This paper is devoted to study the numerical approximation to a class of stochastic differen-
tial equations (SDEs) driven by both the Brownian motion, B(t) and the symmetric α-stable
process, L(t) of the form

dx(t) = f(x(t))dt+ g(x(t))dB(t) + dL(t), 0 ≤ t ≤ T, (1.1)

with the initial value x(0) = x0.
Janicki, Michna and Weron in [?] studied the Euler Maruyama (EM) method when

the coefficients of (??) satisfy the global Lipschitz condition. Pamen and Taguchi in [?]
investigated the EM method for the case that L(t) is a truncated α-stable process and
the drift coefficient is Hölder continuous. Huang and Liao in [?] extended the results to
stochastic functional results when the driven noise is the symmetric α-stable process. To
our best knowledge, it seems that few result on the numerical approximation is available
for (??) when the drift coefficient is allowed to grow super-linearly. Meanwhile, super-linear
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terms appear in SDE models frequently. To fill in this gap, the main purpose of this paper
is to study the numerical approximation to this class of SDEs.

As indicated by Hutzenthaler, Jentzen and Kloeden in [?], the EM method fails to con-
vergence when some super-linearity appears in the coefficients. Therefore, we propose the
semi-implicit EM method for (??) when the drift coefficient may grow super-linearly. The
semi-implicit EM method has been extensively investigated for (??) when the L(t) is absent,
see for example [?] and the references therein. The strong convergence rate is proved to be
1/2 in this case due to that the second moment of B(t) is t. The main difference and diffi-
culty of this paper are brought in by the extra driven process L(t), which is a generalisation
of B(t) with the moments dependent on the α. More precisely,

E|L(t)|q ≤ C1t
q/α, (1.2)

for any q ∈ [1, α). (see Property 1.2.17 at Page 18 of [?])
In this paper, we show that the semi-implicit EM method converge strongly to (??) with

the super-linear drift coefficient and the convergence rate is (α − ε)/4 for any arbitrarily
small ε > 0 and α ∈ [1, 2).

The paper is constructed as follows. Section ?? contains assumptions and useful lemmas.
The main result is presented and proved in Section ??. An example is provided in ?? to
illustrate that our main can cover a large class of non-linear SDEs.

2 Mathematical preliminary

Throughout this paper, unless otherwise specified, we use the following notation. If A is
a vector or matrix, its transpose is denoted by AT . For x ∈ Rn, |x| denotes its Euclidean
norm. If A is a matrix, we let |A| =

√
trace(ATA) be its trace norm. C stands for a generic

positive real constant.
Let

(
Ω,F , {Ft}t≥0,P

)
be a complete probability space with a filtration {Ft}t≥0 satis-

fying the usual conditions (i.e. it is increasing and right continuous while F0 contains all

P-null sets). Let B(t) =
(
B1(t), · · · , Bm(t)

)T
be an m-dimensional Brownian motion defined

on the probability space.
In this paper, we consider the following stochastic differential equations driven by sym-

metric α-stable process

dx(t) = f(x(t))dt+ g(x(t))dB(t) + dL(t), 0 ≤ t ≤ T, (2.1)

with the initial value x(0) = x0, where f : Rn 7→ Rn and g : Rn 7→ Rn×m are measurable
functions. Here L(t) is a scalar symmetric α-stable process. Throughout this paper, we
assume that α ∈ (1, 2).

In Chapter 1 of [?], the authors present four equivalent ways to describe the α-stable pro-
cess. In this paper, we adopt the following description. A stochastic process L = {L(t)}0≤t≤T

on Rd is called a α-stable process on the probability space
(
Ω,F , {Ft}t≥0,P

)
if the following

conditions are satisfied:
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• L(0) = 0, a.s.

• For any n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T , the random variables L(t0),
L(t1)− L(t0), L(t2)− L(t1), · · · L(tn)− L(tn−1) are independent.

• For any 0 ≤ s < t < ∞, L(t)− L(s) follows Sα((t− s)1/α, 0, 0)), where Sα(σ, β, µ) is a
four-parameter stable distribution.

It should be mentioned that such a description makes numerical simulations quite straight-
forward. The symmetric α-stable process belongs to the family of Lévy process. We refer
the readers to [?] for the detailed introduction to Lévy processes driven SDEs.

Now, we impose the following assumptions on the drift and diffusion coefficients.

(A1) Assume that there exists a constant K1 > 0 such that for any q ≥ 2 and x ∈ Rn

xTf(x) +
q − 1

2
|g(x)|2 ≤ K1(1 + |x|2). (2.2)

(A2) Assume that there exist constants K2 > 0 and γ > 0 such that for any x, y ∈ Rn

|f(x)− f(y)|2 ≤ K2(1 + |x|γ + |y|γ)|x− y|2, (2.3)

and
|g(x)− g(y)|2 ≤ K2|x− y|2. (2.4)

(A3) Assume that there exists a constant K3 > 0 such that for any x, y ∈ Rn

(x− y)T (f(x)− f(y)) ≤ K3|x− y|2. (2.5)

For some given time step ∆ ∈ (0, 1) and the terminal time T , define N = T/∆. The
semi-implicit Euler-Maruyama method for (??) is defined by

yi+1 = yi + f(yi+1)∆+ g(yi)∆Bi +∆Li, (2.6)

with y(0) = x0, where ∆Bi is the Brownian increment following the normal distribution with
the mean 0 and the variance ∆ and ∆Li = L(ti+1) − L(ti) follows the stable distribution
Sα(∆

1/α, 0, 0)) for i = 1, 2, · · · , N . Thus, yi is the approximation to x(i∆) for i = 1, 2, · · · , N .
We also define the piecewise continuous numerical solution by

y(t) = yi, for t ∈ [i∆, (i+ 1)∆), i = 1, 2, · · · . (2.7)

The following lemmas are needed for the proof of our main result.

Lemma 2.1. Suppose that (A1) holds, then the solution to (??) satisfies

E|x(t)|q ≤ C. (2.8)
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Proof : By the Itô formula, we have that for any 0 ≤ t ≤ T ,

d|x(t)|q = |x(0)|q +
∫ t

0

[
q|x(s)|q−2xTf(x(s)) +

q(q − 1)

2
|x(s)|q−2|g(x(s))|2

]
ds+M(t),

where M(t) is a martingale with EM(t) = 0. By (??), we can see that

E|x(t)|q ≤ E|x0|q + qK1E
∫ t

0

|x(s)|q−2(1 + |x(s)|2) ds

≤ E|x0|q + qK1E
∫ t

0

(1 + 2|x(s)|q) ds

≤ E|x0|q + qK1t+ 2qK1E
∫ t

0

|x(s)|q ds.

An application of Gronwall’s inequality yields the required assertion. �

Lemma 2.2. Suppose that (A2) holds, then for any 1 < p < α and |t− s| < 1

E|x(t)− x(s)|p ≤ C|t− s|
p
2 . (2.9)

Proof : For any 0 ≤ s < t, we derive from (??) that

x(t)− x(s) =

∫ t

s

f(x(r)) dr +

∫ t

s

g(x(r)) dB(r) + (L(t)− L(s)).

Taking pth moment on both sides, by the elementary inequality |u + v + w|p ≤ 3p−1(|u|p +
|v|p + |w|p) for any u, v, w ∈ Rn, Hölder’s inequality, Itô isometry and (??) we have

E|x(t)− x(s)|p = E
∣∣∣∣∫ t

s

f(x(r)) dr +

∫ t

s

g(x(r)) dB(r) + (L(t)− L(s))

∣∣∣∣p
≤ 3p−1E

∣∣∣∣∫ t

s

f(x(r)) dr

∣∣∣∣p + 3p−1E
∣∣∣∣∫ t

s

g(x(r)) dB(r)

∣∣∣∣p + 3p−1E |L(t)− L(s)|p

≤ C
(
|t− s|p + |t− s|

p
2 + |t− s|

p
α

)
≤ C|t− s|

p
2 .

Therefore, the proof is completed. �

3 Main result

Theorem 3.1. Suppose that (A1), (A2) and (A3) hold, then for any ε > 0 the semi-implicit
Euler-Maruyama method (??) is convergent to (??) with the rate of (α− ε)/4, i.e.

E|x(t)− y(t)|2 ≤ C∆
α−ε
2 , for any t ∈ [0, T ]. (3.1)
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Proof : From (??) and (??), we can see that for i = 1, 2, · · · , N

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(s)) ds+

∫ ti+1

ti

g(x(s)) dB(s) + (L(ti+1)− L(ti))

and

yi+1 = yi +

∫ ti+1

ti

f(yi+1) ds+

∫ ti+1

ti

g(yi) dB(s) + (L(ti+1)− L(ti)).

So, we have

x(ti+1)− yi+1 = (x(ti)− yi) +

∫ ti+1

ti

(f(x(s))− f(yi+1)) ds+

∫ ti+1

ti

(g(x(s))− g(yi)) dB(s).

Taking square on both sides yields

|x(ti+1)− yi+1|2 := A1 + A2,

where

A1 =

∫ ti+1

ti

(x(ti+1)− yi+1)
T (f(x(s))− f(yi+1)) ds

and

A2 = (x(ti+1)− yi+1)
T

(
(x(ti)− yi) +

∫ ti+1

ti

(g(x(s))− g(yi)) dB(s)

)
.

To estimate A1, we need rewrite the integrand of A1 into two parts

(x(ti+1)− yi+1)
T (f(x(s))− f(yi+1))

= (x(ti+1)− yi+1)
T (f(x(ti+1))− f(yi+1)) + (x(ti+1)− yi+1)

T (f(x(s))− f(x(ti+1)))

:= A11 + A12.

Using (??), we can obtain
A11 ≤ K3|x(ti+1)− yi+1|2.

Applying the elementary inequality uTv ≤ 1
2
|u|2 + 1

2
|v|2 for u, v ∈ Rn and (??), we have

A12 ≤
1

2
|x(ti+1)− yi+1|2 +

1

2
|f(x(s))− f(x(ti+1))|2

≤ 1

2
|x(ti+1)− yi+1|2 +

K2

2
(1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2.

Therefore, we have

A1 ≤
∫ ti+1

ti

[
(K3 +

1

2
)|x(ti+1)− yi+1|2 +

K2

2
(1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2

]
ds.

(3.2)
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Using the elementary inequality, we can get, for any ε > 0,

(1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2−α+ε

≤ (1 + |x(s)|γ + |x(ti+1)|γ)(|x(s)|2−α+ε + |x(ti+1)|2−α+ε)

≤ 3(|x(s)|2+γ + |x(ti+1)|2+γ).

We choose a = (2α − ε)/(2α − 2ε), then we have (2 + γ) a
a−1

≥ 2 and 1 < a(α − ε) < α.
By Hölder’s inequality, (??) and (??),

E((1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2)
= E

[
((1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2−α+ε)|x(s)− x(ti+1)|α−ε

]
≤ 3E

[
(|x(s)|2+γ + |x(ti+1)|2+γ)|x(s)− x(ti+1)|α−ε

]
≤ 3

(
E(|x(s)|2+γ + |x(ti+1)|2+γ)

a
a−1

)a−1
a (

E|x(s)− x(ti+1)|a(α−ε)
) 1

a

≤ 3
(
2

1
a−1

)(
E|x(s)|(2+γ) a

a−1 + E|x(ti+1)|(2+γ) a
a−1

)a−1
a

(
C|s− ti+1|

a(α−ε)
2

) 1
a

≤ C|s− ti+1|
α−ε
2 .

So we can get from (??) that

E(A1)

≤
∫ ti+1

ti

[
(K3 +

1

2
)E|x(ti+1)− yi+1|2 +

K2

2
E
(
(1 + |x(s)|γ + |x(ti+1)|γ)|x(s)− x(ti+1)|2

)]
ds

≤
∫ ti+1

ti

[
(K3 +

1

2
)E|x(ti+1)− yi+1|2 + C∆

α−ε
2

]
ds

≤ (K3 +
1

2
)∆E|x(ti+1)− yi+1|2 + C∆

α−ε
2

+1.

(3.3)

Now we are handing the A2. By the elementary inequality, we can show that

A2 =
1

2
|x(ti+1)− yi+1|2 +

1

2

∣∣∣∣(x(ti)− yi) +

∫ ti+1

ti

(g(x(s))− g(yi)) dB(s)

∣∣∣∣2 .
Define

A21 =

∣∣∣∣(x(ti)− yi) +

∫ ti+1

ti

(g(x(s))− g(yi)) dB(s)

∣∣∣∣2 .
Taking expectation on both sides, by the Itô isometry we have

E(A21) = E|(x(ti)− yi)|2 +
∫ ti+1

ti

|g(x(s))− g(yi)|2 ds.
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Rewriting the integrand of the second term on he right hand side, by the elementary in-
equality and (??), we then have

|g(x(s))− g(yi)|2 ≤ 2|g(x(s))− g(x(ti))|2 + 2|g(x(ti))− g(yi)|2

≤ 2K2

(
|x(s)− x(ti)|2 + |x(ti)− yi|2

)
.

We choose a = (2α− ε)/(2α− 2ε), then we have (2− α+ ε) a
a−1

≥ 2 and 1 < a(α− ε) < α.
By Hölder’s inequality, the elementary inequality, (??) and (??),

E|x(s)− x(ti)|2 = E
(
|x(s)− x(ti)|2−α+ε|x(s)− x(ti)|α−ε

)
≤

(
E|x(s)− x(ti)|(2−α+ε) a

a−1

)a−1
a (

E|x(s)− x(ti)|a(α−ε)
) 1

a

≤
(
E|x(s)|(2−α+ε) a

a−1 + E|x(ti)|(2−α+ε) a
a−1

)a−1
a

(
E(C|s− ti|

a(α−ε)
2 )

) 1
a

≤ C∆
α−ε
2 .

(3.4)

We can see that

E(A2) ≤
1

2
E|x(ti+1)− yi+1|2 + (

1

2
+K2∆)E|x(ti)− yi|2 + C∆

α−ε
2

+1. (3.5)

Combining (??) and (??), we get

E|x(ti+1)− yi+1|2 ≤ E(A1) + E(A2)

≤ (K3∆+
1

2
∆+

1

2
)E|x(ti+1)− yi+1|2 + (K2∆+

1

2
)E|x(ti)− yi|2 + C∆

α−ε
2

+1.

Putting all the terms at t = ti+1 on the left hand side, we have

E|x(ti+1)− yi+1|2 ≤
1 + 2K2∆

1− 2K3∆−∆
E|x(ti)− yi|2 + C∆

α−ε
2

+1.

Now summing both sides from 1 to i yields

i∑
r=1

E|x(tr)− yr|2 ≤
1 + 2K2∆

1− 2K3∆−∆

i−1∑
r=0

E|x(tr)− yr|2 + iC∆
α−ε
2

+1.

By i∆ = ti ≤ eCti , we have

E|x(ti)− yi|2 ≤
∆(1 + 2K2 + 2k3)

1− 2K3∆−∆

i−1∑
r=0

E|x(tr)− yr|2 + C∆
α−ε
2 eCti .

By discrete Gronwall’s inequality we get

E|x(ti)− yi|2 ≤ C∆
α−ε
2 eCti . (3.6)

Moreover, when t ∈ [i∆, (i+ 1)∆) for any i = 1, 2, · · · , by (??), (??) and (??) we have

E|x(t)− y(t)|2 ≤ 2E|x(t)− x(ti)|2 + 2E|x(ti)− yi|2 ≤ C∆
α−ε
2 .

The proof is completed. �
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4 Example

Consider a scalar SDE

dx(t) = (x(t)− x3(t))dt+ 2x(t)dB(t) + dL(t), (4.1)

with the initial value x(0) = x0. It is clear that for any q ≥ 2 (A1) holds with

x(x− x3) +
q − 1

2
|2x|2 ≤ (2q − 3)(1 + |x|2).

Moreover, we have

|(x− x3)− (y − y3)|2 ≤ 8|x− y|2(1 + |x|4 + |y|4) and |2x− 2y|2 ≤ 4|x− y|2,

where Young’s inequality |x|2|y|2 ≤ |x|4 + |y|4 is used. Thus, (A2) is satisfied. In addition,

(x− y)((x− x3)− (y − y3)) ≤ |x− y|2.

That is, (A3) is satisfied. Therefore, we conclude by Theorem ?? that the semi-implicit EM
is convergent to (??) with the rate of (α− ε)/4 for any arbitrarily small ε > 0.
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